Energy of a Polaron in a Wurtzite Nitride Finite Parabolic Quantum Well

  • The effects of electron--phonon interaction on energy levels of a polaron in
    a wurtzite nitride finite parabolic quantum well (PQW) are studied by using a modified Lee--Low--Pines variational method. The ground state, first excited state, and transition energy of the polaron in the GaN/Al 0.3 Ga 0.7 N wurtzite PQW are calculated by taking account of the influence of confined LO(TO)-like phonon modes and the half-space LO(TO)-like phonon modes and considering the anisotropy of all kinds of phonon modes. The numerical results are given and discussed. The results show that the electron--phonon interaction strongly affects the energy levels of the polaron, and the contributions from phonons to the energy of a polaron in a wurtzite nitride PQW are greater than that in an AlGaAs PQW. This indicates that the electron--phonon interaction in a wurtzite nitride PQW is not negligible.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return