Periodic Bifurcation and Soliton Deflexion for Kadomtsev--Petviashvili Equation
-
Abstract
The spatial--temporal bifurcation for Kadomtsev--Petviashvili (KP) equations is considered. Exact two-soliton solution and doubly periodic solution to the KP-I equation, and two classes of periodic soliton solutions in different directions to KP-II are obtained using the bilinear form, homoclinic test technique and temporal and spatial transformation method, respectively. The equilibrium solution u0=-1/6, a unique spatial--temporal bifurcation which is periodic bifurcation for KP-I and deflexion of soliton for KP-II, is investigated.
Article Text
-
-
-
About This Article
Cite this article:
DAI Zheng-De, LI Shao-Lin, LI Dong-Long, ZHU Ai-Jun. Periodic Bifurcation and Soliton Deflexion for Kadomtsev--Petviashvili Equation[J]. Chin. Phys. Lett., 2007, 24(6): 1429-1432.
DAI Zheng-De, LI Shao-Lin, LI Dong-Long, ZHU Ai-Jun. Periodic Bifurcation and Soliton Deflexion for Kadomtsev--Petviashvili Equation[J]. Chin. Phys. Lett., 2007, 24(6): 1429-1432.
|
DAI Zheng-De, LI Shao-Lin, LI Dong-Long, ZHU Ai-Jun. Periodic Bifurcation and Soliton Deflexion for Kadomtsev--Petviashvili Equation[J]. Chin. Phys. Lett., 2007, 24(6): 1429-1432.
DAI Zheng-De, LI Shao-Lin, LI Dong-Long, ZHU Ai-Jun. Periodic Bifurcation and Soliton Deflexion for Kadomtsev--Petviashvili Equation[J]. Chin. Phys. Lett., 2007, 24(6): 1429-1432.
|