Polarization Properties of Quantum-Dot-Based Single Photon Sources

  • Received Date: April 10, 2007
  • Published Date: June 30, 2007
  • Polarization properties of single photons emitted by optical pumping from a single quantum dot (QD) are studied by using a four-level system model. The model is capable of explaining the polarization uncertainty observed in single photon emission experiments. It is found that the dependence of photon emission efficiency and polarization visibility on pump power are opposite in general cases. By employing QDs with small size and strong carrier confinement, the photon polarization visibility under high pump power can be improved. In addition, embedding a QD into a well designed microcavity is also found to be favourable, whereas the trade-off between high polarization visibility and multi-photon emission is noted.
  • Article Text

  • [1] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod.Phys. 74 145
    [2] Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang LD, Hu E and Imamoglu A 2000 Science 290 2282
    [3] Santori C, Pelton M, Solomon G, Dale Y and Yamamoto Y 2001 Phys. Rev. Lett. 86 1502
    [4] Zwiller V, Blom H, Jonsson P, Panev N, Jeppesen S, Tsegaye T,Goobar E, Pistol M E, Samuelson L and Bjork G 2001 Appl. Phys.Lett. 78 2476
    [5] Unitt D C, Bennett A J, Atkinson P, Ritchie D A and Shields A J2005 Phys. Rev. B 72 033318
    [6] Daraei A, Tahraoui A, Sanvitto D, Timpson J A, Fry P W, HopkinsonM, Guimaraes P S S, Vinck H, Whittaker D M, Skolnick M S and Fox A M2006 Appl. Phys. Lett. 88 051113
    [7] Santori C 2003 Ph.D. Thesis (Stanford University)
    [8] Kulakovskii V D, Bacher G, Weigand R, Kummell T and Forchel A 1999 Phys. Rev. Lett. 82 1780
    [9] Kamada H, Gotoh H, Ando H, Temmyo J and Tamamura T 1999 Phys. Rev. B 60 5791
    [10] Muller T, Strasser G and Unterrainer K 2006 Appl. Phys.Lett. 88 192105
    [11] Santori C, Fattal D, Pelton M, Solomon G S and Yamamoto Y 2002 Phys. Rev. B 66 045308
    [12] Stevenson R M, Thompson R M, Shields A J, Farrer I, Kardynal B E,Ritchie D A and Pepper M 2002 Phys. Rev. B 66 081302
    [13] Narvaez G A, Bester G and Zunger A 2005 Phys. Rev. B 72 245318
    [14] Yang W D, Lee H, Johnson T J, Sercel P C and Norman A G 2000 Phys. Rev. B 61 2784
    [15] Bayer M, Gutbrod T, Forchel A, Kulakovskii V D, Gorbunov A, MichelM, Steffen R and Wang K H 1998 Phys. Rev. B 58 4740
    [16] Kaiser S, Mensing T, Worschech L, Klopf F, Reithmaier J P andForchel A 2002 Appl. Phys. Lett. 81 4898
    [17] Nair S V and Takagahara T 1997 Phys. Rev. B 55 5153
    [18] Moreau E, Robert I, Gerard J M, Abram I, Manin L and Thierry-MiegV 2001 Appl. Phys. Lett. 79 2865
    [19] Purcell E M 1946 Phys. Rev. 69 681
    [20] Gerard J M, Sermage B, Gayral B, Legrand B, Costard E andThierry-Mieg V 1998 Phys. Rev. Lett. 81 1110
    [21] Englund D, Fattal D, Waks E, Solomon G, Zhang B, Nakaoka T,Arakawa Y, Yamamoto Y and Vuckovic J 2005 Phys. Rev. Lett. 95013904
    [22] Painter O and Srinivasan K 2002 Opt. Lett. 27 339
    [23] Gayral B, Gerard J M, Legrand B, Costard E and Thierry-Mieg V 1998 Appl. Phys. Lett. 72 1421
    [24] Favero I, Cassabois G, Jankovic A, Ferreira R, Darson D, Voisin C,Delalande C, Roussignol P, Badolato A, Petroff P M and Gerard J M 2005 Appl. Phys. Lett. 86 041904
    [25] Vuckovic J, Fattal D, Santori C, Solomon G S and Yamamoto Y 2003 Appl. Phys. Lett. 82 3596
    [26] Ben Y, Hao Z B, Sun C Z, Ren F, Tan N and Luo Y 2004 Opt. Express 12 5146
  • Related Articles

    [1]ZHAO Fan, HE Feng. Statistical Mechanical Entropy of a (4+n)-Dimensional Static Spherically Symmetric Black Hole [J]. Chin. Phys. Lett., 2010, 27(2): 020401. doi: 10.1088/0256-307X/27/2/020401
    [2]MA Chun-Rui, GUI Yuan-Xing, WANG Fu-Jun. Quintessence Contribution to a Schwarzschild Black Hole Entropy [J]. Chin. Phys. Lett., 2007, 24(11): 3286-3289.
    [3]DING Chi-Kun, JING Ji-Liang. Statistical-Mechanical Entropies of Schwarzschild Black Hole due to Arbitrary Spin Fields in Different Coordinates [J]. Chin. Phys. Lett., 2007, 24(8): 2189-2192.
    [4]LIU Cheng-Zhou. Holographic Entropy Bound of a Nonstationary Black Hole [J]. Chin. Phys. Lett., 2006, 23(5): 1092-1095.
    [5]ZHANG Yun, JING Ji-Liang. Dirac Quasinormal Modes of the Schwarzschild--anti-de Sitter Black Hole with a Global Monopole [J]. Chin. Phys. Lett., 2005, 22(10): 2496-2499.
    [6]HAN Yi-Wen, LIU Shou-Yu. Entropy of Nonstatic Black Hole with the Internal Global Monopole and the Generalized Uncertainty Relation [J]. Chin. Phys. Lett., 2005, 22(7): 1608-1610.
    [7]GAO Chang-Jun, SHEN You-Gen. De Broglie-Bohm Quantization of the Reissner-Nordstrom Black Hole with a Global Monopole in the Background of de Sitter Space-Time [J]. Chin. Phys. Lett., 2002, 19(4): 477-480.
    [8]JING Ji-liang. Thermodynamical and Statistical-Mechanical Entropies of the General Static Spherically Symmetric Black Hole [J]. Chin. Phys. Lett., 1998, 15(4): 240-242.
    [9]JING Ji-liang. Quantum Corrections to the Entropy of the Black Hole with a Global Monopole or a Cosmic String [J]. Chin. Phys. Lett., 1997, 14(7): 495-498.
    [10]JING Jiliang, YU Hongwei, WANG Yongjiu. The Motion of a Gyroscope Freely Falling Along the Radial Geodesic in the Space-Time of a Black Hole with a Global Monopole [J]. Chin. Phys. Lett., 1993, 10(7): 445-448.

Catalog

    Article views (2) PDF downloads (728) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return