Dual Role of Wall Slip on Linear Stability of Plane Poiseuille Flow
-
Abstract
The linear stability of plane Poiseuille flow is extended to the cases of two wall boundaries maintaining different slip coefficients β1 and β2. We determine the slip coefficient pairs, β1c and β2c, which yield the same critical Reynolds number as the classical no-slip case. It is found that the wall slip may stabilize the flow for β1>β1c and β2>β2c, whereas slightly destabilize the flow for β1<β1c and β2<β2c.
Article Text
-
-
-
About This Article
Cite this article:
REN Ling, CHEN Jian-Guo, ZHU Ke-Qin. Dual Role of Wall Slip on Linear Stability of Plane Poiseuille Flow[J]. Chin. Phys. Lett., 2008, 25(2): 601-603.
REN Ling, CHEN Jian-Guo, ZHU Ke-Qin. Dual Role of Wall Slip on Linear Stability of Plane Poiseuille Flow[J]. Chin. Phys. Lett., 2008, 25(2): 601-603.
|
REN Ling, CHEN Jian-Guo, ZHU Ke-Qin. Dual Role of Wall Slip on Linear Stability of Plane Poiseuille Flow[J]. Chin. Phys. Lett., 2008, 25(2): 601-603.
REN Ling, CHEN Jian-Guo, ZHU Ke-Qin. Dual Role of Wall Slip on Linear Stability of Plane Poiseuille Flow[J]. Chin. Phys. Lett., 2008, 25(2): 601-603.
|