Thermal Expansion Anomaly of Tb2Fe14Cr3 Compound
-
Abstract
We investigate the thermal expansion property of the Tb2Fe14Cr3 compound by means of x-ray diffraction. The result shows that the Tb2Fe14Cr3 compound has a hexagonal Th2Ni17-type structure. Negative thermal
expansion is found in the Tb2Fe14Cr3 compound from 296 to 493K by x-ray dilatometry. The coefficient of the average thermal expansion is α=-2.82 × 10-5K-1. In the temperature range 493--692K, the coefficient of the average thermal expansion is α=1.59 × 10-5K-1. The physical mechanism of thermal expansion anomaly of the Tb2Fe14Cr3 compound is discussed according to the temperature dependence of magnetization measured by a superconducting quantum interference device. -
References
[1] Evans J S O, Hu Z, Jorgensen J D, Argyriou D N, Short S andSleight A W 1997 Science 75 61 [2] Lagarec K and Rancourt D G 2000 Phys. Rev. B 62 978 [3] Hao Y M, Gao Y, Wang B W, Qu J P, Li Y X, Hu J F and Deng J C 2001 Appl. Phys Lett. 78 3277 [4] Wang J L, Campbell S J, Tegus O, Marquina C and Ibarra M R 2007 Phys. Rev. B 75 174423 [5] Hao Y M, Zhao M and Zhou Y 2005 J. Appl. Phys. 98 076101 [6] Wang H Y, Zhao M, Gao Y et al 2006 Transactions ofNonferrous Metals Society of China 16 1331 [7] Hao Y M, Zhou Y and Zhao M 2005 J. Appl. Phys. 97 116102 [8] Hao Y M, Zhao M, Zhou Y and Hu J F 2005 Scripta Mater. 53 357 -
Related Articles
[1] Man Xing, Jun Wang, Xi Zhao, Shushan Zhou. The Role of Multi-Electron and Multi-Orbital Effects in High-Order Harmonic Generation of Benzonitrile Molecules [J]. Chin. Phys. Lett., 2025, 42(4): 043201. doi: 10.1088/0256-307X/42/4/043201 [2] ZHAO Jing, ZHAO Zeng-Xiu. Effects of Bounding Potential on High-Order Harmonic Generation with H2+ [J]. Chin. Phys. Lett., 2010, 27(6): 063301. doi: 10.1088/0256-307X/27/6/063301 [3] GUO Ying-Chun, FU Pan-Ming, WANG Bing-Bing. High-Order Above-Threshold Ionization of H2+ in Intense Laser Field [J]. Chin. Phys. Lett., 2009, 26(3): 034204. doi: 10.1088/0256-307X/26/3/034204 [4] GE Yu-Cheng. Laser-Duration Dependence of Emission Properties of High-Order Harmonic Generation [J]. Chin. Phys. Lett., 2008, 25(4): 1305-1308. [5] GE Yu-Cheng. Laser Phase Relations of High-Order Harmonic Generation [J]. Chin. Phys. Lett., 2006, 23(9): 2461-2464. [6] PI Liang-Wen, SHI Ting-Yun, QIAO Hao-Xue. Enhancement of Bichromatic High-Order Harmonic Generation by a Strong Laser Field and Its Third Harmonic [J]. Chin. Phys. Lett., 2006, 23(6): 1490-1493. [7] WANG Run-Hai, JIANG Hong-Bing, YANG Hong, WU Cheng-Yin, GONG Qi-Huang. High-Order Harmonic Generation by Two Non-Collinear Femtosecond Laser Pulses in CO [J]. Chin. Phys. Lett., 2005, 22(8): 1913-1915. [8] CHEN Jing, CHEN Shi-Gang, LIU Jie. High-Order Harmonic Generation in the Ionization Process [J]. Chin. Phys. Lett., 2000, 17(10): 723-725. [9] WANG Bing-bing, LI Xiao-feng, FU Pan-ming. Effect of a Static Electric Field on High-Harmonic Generation in a Polarized Laser Field [J]. Chin. Phys. Lett., 1999, 16(10): 723-725. [10] WANG Bing-bing, LI Xiao-feng, FU Pan-ming. High-Order Harmonic Generation in the Presence of Static Electric Field [J]. Chin. Phys. Lett., 1998, 15(3): 195-197.