Flexible Cu(In, Ga)Se2 Thin-Film Solar Cells on Polyimide Substrate by Low-Temperature Deposition Process

  • Received Date: November 26, 2007
  • Published Date: January 31, 2008
  • The electrical and structural properties of polycrystalline Cu(In,Ga)Se2 films grown on polyimide (PI) substrates below 400°C via one-stage and three-stage co-evaporation process have been investigated by x-ray diffraction spectra (XRD), scanning electron microscopy (SEM) and Hall effect measurement. As shown by XRD spectra, the stoichiometric CIGS films obtained by one-stage process exhibit the characteristic diffraction peaks of the (In0.68Ga0.32)2Se3 and Cu(In0.7Ga0.3)2Se. It is also found that the film
    structures indicate more columnar and compact than the three-stage process films from SEM images. The stoichiometric CIGS films obtained by three-stage process exhibit the coexistence of the secondary phase of (In0.68Ga0.32)2Se3, Cu2-xSe and Cu(In0.7Ga0.3)2Se. High net carrier concentration and
    sheet conductivity are also observed for this kind of film, related to the presence of Cu2-xSe phase. As a result, when the CIGS film growth temperature is below 400°C, the three-stage process is inefficient for solar cells. By using the one-stage co-evaporation process, the flexible CIGS solar cell on a PI substrate with the best conversion efficiency of 6.38% is
    demonstrated (active area 0.16cm2).
  • Article Text

  • [1] Tiwari A N, Krejci M, Haug F J and Zogg H 1999 Prog.Photovolt: Res. Appl. 7 393
    [2] Br\'emaud D, Rudmann D, Bilger G, Zogg H and Tiwari A N 2005 Proc. IEEE Photovoltaic Specialists Conference p 223
    [3] Kessler F and Rudmann D 2004 Solar Energy 77 685
    [4] Basol B M, Kapur V K, Leidholm C R, Halani A and Gledhill K 1996 Sol. Energy Mater. Sol. Cells 43 93
    [5] Hanket M G, Singh U P, Eser E, Shafarman W N and Birkmire R W 2002 Proc. IEEE Photovoltaic Specialists Conference p 567
    [6] Kaufmann C A, Neisser A, Klenk R and Scheer R 2005 Thin SolidFilms 480-481 515
    [7] Kessler F, Herrmann D and Powalla M. 2005 Thin Solid Films 480-481 491
    [8] Hartmann M, Schmidt M, Jasenek A and Schock H W 2000 Proc.IEEE Photovoltaic Specialists Conference p 638
    [9] Shafarman W N and Zhu J 2000 Thin Solid Films 361-362473
    [10] Zhang L, Sun Y, He Q, Xu CH M, Xiao J P, Xue Y M and Li C J2006 Acta Energiea Sol. Sin. 27 895 (in Chinese)
    [11] Birkmire R, Eser E, Fields S and Shafarman W 2005 Prog.Photovolt: Res. Appl. 13 141
    [12] Gabor A M, Tutlle J R, Albin D S, Contreras M A and Noufi R 1994 Appl. Phys. Lett. 65 198
    [13] Xu C M, Sun Y, Li F Y, Zhang L, Xue Y M, He Q and Liu H T 2006 Chin. Phys. Lett. 8 2259
    [14] Ard M B, Grannath K and Stolt L 2000 Thin Solid Films 361-362 9
    [15] Nishiwaki S, Satoh T, Hayashi S, Hashimoto Y, Negami T and Wada T1999 J. Mater. Res. 14 4514
  • Related Articles

    [1]Long Zhang, Chengxiang Ding. Finite-Size Scaling Theory at a Self-Dual Quantum Critical Point [J]. Chin. Phys. Lett., 2023, 40(1): 010501. doi: 10.1088/0256-307X/40/1/010501
    [2]José Antonio Belinchón. Scale-Covariant Theory of Gravitation Through Self-Similarity [J]. Chin. Phys. Lett., 2012, 29(5): 050401. doi: 10.1088/0256-307X/29/5/050401
    [3]Guo Jin-Li. Scale-free Networks with Self-Similarity Degree Exponents [J]. Chin. Phys. Lett., 2010, 27(3): 038901. doi: 10.1088/0256-307X/27/3/038901
    [4]H. Demirel, A.Ozkan, B. Kutlu. Finite-Size Scaling Analysis of a Three-Dimensional Blume--Capel Model in the Presence of External Magnetic Field [J]. Chin. Phys. Lett., 2008, 25(7): 2599-2602.
    [5]ZHAO Chu-Jun, FAN Dian-Yuan, PENG Run-Wu, TANG Zhi-Xiang, YE Yun-Xia. Core Size Scaling of Helical-Core Optical Fibres [J]. Chin. Phys. Lett., 2006, 23(10): 2793-2795.
    [6]B. Kutlu, M. Civi. Critical Finite Size Scaling Relation of the Order-Parameter Probability Distribution for the Three-Dimensional Ising Model on the Creutz Cellular Automaton [J]. Chin. Phys. Lett., 2006, 23(10): 2670-2673.
    [7]LIU Hui-Ping, SUN Yun-Zhou, YI Lin. Heat Conductivity in a Two-Dimensional Finite-Size Spin System with Dzyaloshinskii--Moriya Interactions [J]. Chin. Phys. Lett., 2006, 23(7): 1713-1715.
    [8]LIU Chuan. Symmetry Breaking in Finite Volume [J]. Chin. Phys. Lett., 2000, 17(3): 180-181.
    [9]SUN Jirong. Self-Similarity of Quasi-Periodic Lattice [J]. Chin. Phys. Lett., 1992, 9(8): 419-422.
    [10]LIU Yimin, PU Fuque(Fu-Cho Pu), SU Hang. Finite Size Corrections for One Dimensional Interacting Fermions [J]. Chin. Phys. Lett., 1992, 9(8): 393-396.

Catalog

    Article views (2) PDF downloads (2707) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return