Calculation of High Frequency Complex Permeability of Carbonyl Iron Flakes in a Nomagnetic Matrix
-
Abstract
The carbonyl iron flakes are fabricated by high-energy ball milling. The effective permeability is measured and calculated for the composite consisting of flakes embedded in a nonmagnetic matrix. The magnetic flakes with a shape anisotropy and random spatial distribution of normal direction are
considered to calculate the complex permeability of magnetic flake materials. Its analytical model is derived from the Landau--Lifshitz--Gilbert equation and Bruggeman's effective medium theory. The calculated results agree well with the experiment.
Article Text
-
-
-
About This Article
Cite this article:
WEN Fu-Sheng, QIAO Liang, YI Hai-Bo, ZHOU Dong, LI Fa-Shen. Calculation of High Frequency Complex Permeability of Carbonyl Iron Flakes in a Nomagnetic Matrix[J]. Chin. Phys. Lett., 2008, 25(2): 751-754.
WEN Fu-Sheng, QIAO Liang, YI Hai-Bo, ZHOU Dong, LI Fa-Shen. Calculation of High Frequency Complex Permeability of Carbonyl Iron Flakes in a Nomagnetic Matrix[J]. Chin. Phys. Lett., 2008, 25(2): 751-754.
|
WEN Fu-Sheng, QIAO Liang, YI Hai-Bo, ZHOU Dong, LI Fa-Shen. Calculation of High Frequency Complex Permeability of Carbonyl Iron Flakes in a Nomagnetic Matrix[J]. Chin. Phys. Lett., 2008, 25(2): 751-754.
WEN Fu-Sheng, QIAO Liang, YI Hai-Bo, ZHOU Dong, LI Fa-Shen. Calculation of High Frequency Complex Permeability of Carbonyl Iron Flakes in a Nomagnetic Matrix[J]. Chin. Phys. Lett., 2008, 25(2): 751-754.
|