High-Temperature Dielectric Response and Multiscale Mechanism of SiO2/Si3N4 Nanocomposites
-
Abstract
The high-temperature dielectric properties of SiO2/Si3N4 nanocomposites are investigated theoretically and experimentally. Its permittivities and loss tangents at the temperature ranging from room temperature to 1300°C at 9.0GHz are measured by the resonant cavity method. The SiO2/Si3N4 nanocomposites show complex dielectric behaviour at elevated temperature, and a multi-scale model is proposed to describe the dependence of the dielectric properties in the SiO2/Si3N4 on its compositional variations. Such a theory is needed so that the available property measurements could be extrapolated to other operating frequencies and temperatures.
Article Text
-
-
-
About This Article
Cite this article:
HOU Zhi-Ling, ZHANG Liang, YUAN Jie, SONG Wei-Li, CAO Mao-Sheng. High-Temperature Dielectric Response and Multiscale Mechanism of SiO2/Si3N4 Nanocomposites[J]. Chin. Phys. Lett., 2008, 25(6): 2249-2252.
HOU Zhi-Ling, ZHANG Liang, YUAN Jie, SONG Wei-Li, CAO Mao-Sheng. High-Temperature Dielectric Response and Multiscale Mechanism of SiO2/Si3N4 Nanocomposites[J]. Chin. Phys. Lett., 2008, 25(6): 2249-2252.
|
HOU Zhi-Ling, ZHANG Liang, YUAN Jie, SONG Wei-Li, CAO Mao-Sheng. High-Temperature Dielectric Response and Multiscale Mechanism of SiO2/Si3N4 Nanocomposites[J]. Chin. Phys. Lett., 2008, 25(6): 2249-2252.
HOU Zhi-Ling, ZHANG Liang, YUAN Jie, SONG Wei-Li, CAO Mao-Sheng. High-Temperature Dielectric Response and Multiscale Mechanism of SiO2/Si3N4 Nanocomposites[J]. Chin. Phys. Lett., 2008, 25(6): 2249-2252.
|