NOTE ON THE AC HYSTERESIS EFFECT OF THE CHARGE DENSITY WAVE SYSTEM
-
Abstract
An analysis of the nonlinear ac dynamics of charge density wave condensate based on the Tua-Zawadowski model is presented. The obtained results are consistent with the Tessema-Ong experiments.
-
References
-
Related Articles
[1] DAI Zheng-De, WU Feng-Xia, LIU Jun, MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation [J]. Chin. Phys. Lett., 2012, 29(4): 040201. doi: 10.1088/0256-307X/29/4/040201 [2] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 2012, 29(3): 030201. doi: 10.1088/0256-307X/29/3/030201 [3] LV Zhong-Quan, XUE Mei, WANG Yu-Shun. A New Multi-Symplectic Scheme for the KdV Equation [J]. Chin. Phys. Lett., 2011, 28(6): 060205. doi: 10.1088/0256-307X/28/6/060205 [4] WANG Yu-Shun, WANG Bin, CHEN Xin. Multisymplectic Euler Box Scheme for the KdV Equation [J]. Chin. Phys. Lett., 2007, 24(2): 312-314. [5] LI Wen-Min, GENG Xian-Guo. Darboux Transformation of a Differential--Difference Equation and Its Explicit Solutions [J]. Chin. Phys. Lett., 2006, 23(6): 1361-1364. [6] MA Chang-Feng. A New Lattice Boltzmann Model for KdV-Burgers Equation [J]. Chin. Phys. Lett., 2005, 22(9): 2313-2315. [7] YAN Jia-Ren, PAN Liu-Xian, ZHOU Guang-Hui. Soliton Perturbations for a Combined KdV-MKdV Equation [J]. Chin. Phys. Lett., 2000, 17(9): 625-627. [8] YANG Kongqing. A Periodic Solution of Kdv Equation in Virasoro Algebra [J]. Chin. Phys. Lett., 1995, 12(2): 65-67. [9] ZHANG Jiefang, HAN Ping. Symmetries of the Variable Coefficient KdV Equation and ThreeHierarchies of the Integrodifferential Variable Coefficient KdV Equation [J]. Chin. Phys. Lett., 1994, 11(12): 721-723. [10] TANG Shimin. Various Progressive Waves as solutions to the Modified KdV Equation [J]. Chin. Phys. Lett., 1991, 8(6): 292-295.