Motion of Test Particle in Generalized Schwarzschild Geometry
-
Abstract
By the Hamilton-Jacobi formalism, the features of orbits of a test particle moving in generalized Schwarzschild geometries with the parameter 0 < λ ≤ 1 are studied, where the intensity of λ corresponds to the contribution of massless scalar field. In special case λ= 1, it is reduced to the Schwarzschild metric. It is found that λ= 1/2 is a critical point, when 1/2 ≤ λ < 1 the qualitative features are similar to Schwarzschild geometry whereas the case of 0 < λ < 1/2 is different from the case of λ= 1.
Article Text
-
-
-
About This Article
Cite this article:
ZHAI Xiang-hua, YUAN Ning-yi, LI Xin-zhou. Motion of Test Particle in Generalized Schwarzschild Geometry[J]. Chin. Phys. Lett., 1999, 16(5): 321-323.
ZHAI Xiang-hua, YUAN Ning-yi, LI Xin-zhou. Motion of Test Particle in Generalized Schwarzschild Geometry[J]. Chin. Phys. Lett., 1999, 16(5): 321-323.
|
ZHAI Xiang-hua, YUAN Ning-yi, LI Xin-zhou. Motion of Test Particle in Generalized Schwarzschild Geometry[J]. Chin. Phys. Lett., 1999, 16(5): 321-323.
ZHAI Xiang-hua, YUAN Ning-yi, LI Xin-zhou. Motion of Test Particle in Generalized Schwarzschild Geometry[J]. Chin. Phys. Lett., 1999, 16(5): 321-323.
|