Ab Initio Molecular Dynamics Simulations on Structural Properties of
-
Abstract
Ab initio molecular dynamics simulations on liquid In20Sn80 alloy are carried out at six different temperatures from 798K to 1193K. The temperature dependences of binding energy, volume, pair-correlation function and structure factor are studied. The first-peak position of our calculated pair correlation function is in agreement with the experimental data. A shoulder is reproduced in the high wave number side of the first peak in our calculated structure factor, implying the existence of the residual directional bonds of Sn atoms in liquid In20Sn80 alloy. The first-peak height of our calculated structure factor and the coordination number of Sn atom decrease more sharply in the low-temperature region from 798K to 986K than that in the high-temperature region from 986K to 1193K, suggesting that a discontinuous structural change may occur at around 986K in liquid In20Sn80 alloy.
Article Text
-
-
-
About This Article
Cite this article:
ZHAO Gang, LIU Chang-Song, ZHU Zhen-Gang. Ab Initio Molecular Dynamics Simulations on Structural Properties of[J]. Chin. Phys. Lett., 2005, 22(8): 1987-1990.
ZHAO Gang, LIU Chang-Song, ZHU Zhen-Gang. Ab Initio Molecular Dynamics Simulations on Structural Properties of[J]. Chin. Phys. Lett., 2005, 22(8): 1987-1990.
|
ZHAO Gang, LIU Chang-Song, ZHU Zhen-Gang. Ab Initio Molecular Dynamics Simulations on Structural Properties of[J]. Chin. Phys. Lett., 2005, 22(8): 1987-1990.
ZHAO Gang, LIU Chang-Song, ZHU Zhen-Gang. Ab Initio Molecular Dynamics Simulations on Structural Properties of[J]. Chin. Phys. Lett., 2005, 22(8): 1987-1990.
|