Connection of Screw Instability with Electric Current in an Accretion Disc around a Black Hole

  • The screw instability of the magnetic field is discussed based on its poloidal configuration generated by a single toroidal electric current flowing in the equatorial plane of a Kerr black hole (BH). The rotation of the BH relative to the disc induces an electromotive force, which in turn results in a poloidal electric current. By using Ampere's law, we calculate the toroidal component of the magnetic field and derive a criterion for the screw instability of the magnetic field connecting the rotating BH with its surrounding disc. It is determined that the screw instability is related to two parameters: the radius of the disc and the BH spin. The occurrence of screw instability is depicted in a parameter space. In addition, we discuss the effect of the screw instability on magnetic extraction of energy from the rotating BH.

  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return