First Principles Study on NaxLi1-xFePO4 As Cathode Material for Rechargeable Lithium Batteries
-
Abstract
The electronic structure and ionic dynamic properties of pure and Na doped (Li site) LiFePO4 have been investigated by first-principles calculations. The band gap of the Na doped material is much narrow than that of the undoped one, indicating of better electronic conductive properties. First-principles based molecular dynamic simulations have been performed to examine the migration energy barriers for the Li ion diffusion. The results shown that the energy barriers for Li diffusion decreased a little along the one-dimensional diffusion pathway, indicating that the ionic conductive property is also improved, as compared with the high valance doping (such as Cr) cases.
Article Text
-
-
-
About This Article
Cite this article:
OUYANG Chu-Ying, WANG De-Yu, SHI Si-Qi, WANG Zhao-Xiang, LI Hong, HUANG Xue-Jie, CHEN Li-Quan. First Principles Study on NaxLi1-xFePO4 As Cathode Material for Rechargeable Lithium Batteries[J]. Chin. Phys. Lett., 2006, 23(1): 61-64.
OUYANG Chu-Ying, WANG De-Yu, SHI Si-Qi, WANG Zhao-Xiang, LI Hong, HUANG Xue-Jie, CHEN Li-Quan. First Principles Study on NaxLi1-xFePO4 As Cathode Material for Rechargeable Lithium Batteries[J]. Chin. Phys. Lett., 2006, 23(1): 61-64.
|
OUYANG Chu-Ying, WANG De-Yu, SHI Si-Qi, WANG Zhao-Xiang, LI Hong, HUANG Xue-Jie, CHEN Li-Quan. First Principles Study on NaxLi1-xFePO4 As Cathode Material for Rechargeable Lithium Batteries[J]. Chin. Phys. Lett., 2006, 23(1): 61-64.
OUYANG Chu-Ying, WANG De-Yu, SHI Si-Qi, WANG Zhao-Xiang, LI Hong, HUANG Xue-Jie, CHEN Li-Quan. First Principles Study on NaxLi1-xFePO4 As Cathode Material for Rechargeable Lithium Batteries[J]. Chin. Phys. Lett., 2006, 23(1): 61-64.
|