Apparent Electrical Conductivity of Porous Titanium Prepared by the Powder Metallurgy Method
-
Abstract
Porous titanium is produced by the powder metallurgy method. Dependence of the electrical conductivity on the porosity and pore size is investigated and the experimental results are compared with a number of models. It is found that the minimum solid area model could be successfully applied to describe the relationship between the electrical conductivity and the porosity of porous titanium. This kind of conductivity increases with increasing pore sizes.
Article Text
-
-
-
About This Article
Cite this article:
LI Cheng-Feng, ZHU Zhen-Gang. Apparent Electrical Conductivity of Porous Titanium Prepared by the Powder Metallurgy Method[J]. Chin. Phys. Lett., 2005, 22(10): 2647-2650.
LI Cheng-Feng, ZHU Zhen-Gang. Apparent Electrical Conductivity of Porous Titanium Prepared by the Powder Metallurgy Method[J]. Chin. Phys. Lett., 2005, 22(10): 2647-2650.
|
LI Cheng-Feng, ZHU Zhen-Gang. Apparent Electrical Conductivity of Porous Titanium Prepared by the Powder Metallurgy Method[J]. Chin. Phys. Lett., 2005, 22(10): 2647-2650.
LI Cheng-Feng, ZHU Zhen-Gang. Apparent Electrical Conductivity of Porous Titanium Prepared by the Powder Metallurgy Method[J]. Chin. Phys. Lett., 2005, 22(10): 2647-2650.
|