Homoclinic Bifurcation for Boussinesq Equation with Even Constraint
-
Abstract
The exact homoclinic orbits and periodic soliton solution for the Boussinesq equation are shown. The equilibrium solution u0=-1/6 is a unique bifurcation point. The homoclinic orbits and solitons will be interchanged with the solution varying from one side of -1/6 to the other side. The solution structure can be understood in general.
Article Text
-
-
-
About This Article
Cite this article:
DAI Zheng-De, JIANG Mu-Rong, DAI Qing-Yun, LI Shao-Lin. Homoclinic Bifurcation for Boussinesq Equation with Even Constraint[J]. Chin. Phys. Lett., 2006, 23(5): 1065-1067.
DAI Zheng-De, JIANG Mu-Rong, DAI Qing-Yun, LI Shao-Lin. Homoclinic Bifurcation for Boussinesq Equation with Even Constraint[J]. Chin. Phys. Lett., 2006, 23(5): 1065-1067.
|
DAI Zheng-De, JIANG Mu-Rong, DAI Qing-Yun, LI Shao-Lin. Homoclinic Bifurcation for Boussinesq Equation with Even Constraint[J]. Chin. Phys. Lett., 2006, 23(5): 1065-1067.
DAI Zheng-De, JIANG Mu-Rong, DAI Qing-Yun, LI Shao-Lin. Homoclinic Bifurcation for Boussinesq Equation with Even Constraint[J]. Chin. Phys. Lett., 2006, 23(5): 1065-1067.
|