Dynamic Polarization-Mode-Dispersion Compensation for 160Gbit/s OTDM Systems
-
Abstract
We report on 160Gbit/s RZ (return-to-zero) code transmission experiments including a dynamic polarization mode dispersion (PMD) compensation. The 2.5-ps first-order and 15-ps2 second-order PMD are compensated for. The PMD compensation time is within 24ms. The experimental results show that a significant improvement of system performance can be achieved by auto-correlative curves. -
References
-
Related Articles
[1] Man Xing, Jun Wang, Xi Zhao, Shushan Zhou. The Role of Multi-Electron and Multi-Orbital Effects in High-Order Harmonic Generation of Benzonitrile Molecules [J]. Chin. Phys. Lett., 2025, 42(4): 043201. doi: 10.1088/0256-307X/42/4/043201 [2] GE Yu-Cheng. Laser Phase Relations of High-Order Harmonic Generation [J]. Chin. Phys. Lett., 2006, 23(9): 2461-2464. [3] WANG Bing-Bing, CHEN Jing, LIU Jie, LI Xiao-Feng, FU Pan-Ming. Carrier Envelope Phase Controlled High-Order Harmonic Generation in Ultrashort Laser Pulse [J]. Chin. Phys. Lett., 2005, 22(9): 2237-2240. [4] WANG Bing-Bing, CHENG Tai-Wang, LI Xiao-Feng, FU Pan-Ming. High-Harmonic Generation by Initial Coherent States in a Short Laser Pulse [J]. Chin. Phys. Lett., 2004, 21(9): 1727-1729. [5] CHENG Xiao-Man, YAO Su-Wei, LI Cheng-Quan, MANAKA Takaaki, IWAMOTO Mitsumasa. Analysis of Second-Harmonic Generation from CuttbPc LB Film/Metal Interface [J]. Chin. Phys. Lett., 2004, 21(1): 153-155. [6] CHENG Tai-Wang, LI Xiao-Feng, AO Shu-Yan, FU Pan-Ming. Interpretation of Plateau in High-Harmonic Generation [J]. Chin. Phys. Lett., 2003, 20(9): 1511-1513. [7] LU Wei-Xin, LIU Ting-Ting, YANG Hong, SUN Tao-Heng, GONG Qi-Huang. High-Order Harmonic Generation by Two Non-collinear Coherent Femtosecond Laser Pulses [J]. Chin. Phys. Lett., 2003, 20(6): 848-851. [8] LIU Ting-Ting, WANG Da-Wei, LU Wei-Xin, SUN Quan, YANG Hong, JIANG Hong-Bing, GONG Qi-Huang. Fifth-Order Harmonic Generation using a Coherent Controlled Two-Pulsed Optical Field [J]. Chin. Phys. Lett., 2002, 19(9): 1301-1303. [9] CHEN Jing, CHEN Shi-Gang, LIU Jie. High-Order Harmonic Generation in the Ionization Process [J]. Chin. Phys. Lett., 2000, 17(10): 723-725. [10] GAO Liang-hui, LI Xiao-feng, GUO Dong-sheng, FU Pan-ming. Formal Scattering Approach to High-Order Harmonic Generation [J]. Chin. Phys. Lett., 1999, 16(7): 502-504. -
Cited by
Periodical cited type(8)
1. Tao, X., Yang, A., Quan, Y. et al. Superconductivity and high hardness in scandium-borides under pressure. Physical Chemistry Chemical Physics, 2025. DOI:10.1039/d4cp03740e 2. Talantsev, E.F., Minkov, V.S., Balakirev, F.F. et al. Comment on "nonstandard superconductivity or no superconductivity in hydrides under high pressure". Physical Review B, 2024, 110(18): 186501. DOI:10.1103/PhysRevB.110.186501 3. Zhang, Y.-J., Zhu, Y., Li, Q. et al. Record-High Superconducting Transition Temperature in a Ti1-xMnx Alloy with the Rich Magnetic Element Mn. Journal of the American Chemical Society, 2024, 146(30): 21110-21119. DOI:10.1021/jacs.4c06836 4. Xue, H.-T., Li, J., Chang, Z. et al. Deep-learning potential molecular dynamics simulations of the structural and physical properties of rare-earth metal scandium. Computational Materials Science, 2024. DOI:10.1016/j.commatsci.2024.113072 5. Wu, X., Guo, S., Guo, J. et al. Robust T c in element molybdenum up to 160 GPa. Chinese Physics B, 2024, 33(4): 047406. DOI:10.1088/1674-1056/ad2a78 6. He, X., Zhang, C.L., Li, Z.W. et al. Superconductivity discovered in niobium polyhydride at high pressures. Materials Today Physics, 2024. DOI:10.1016/j.mtphys.2023.101298 7. Zhao, K., Wang, Q., Li, H. et al. Superconductivity in dense scandium-based phosphides. Physical Review B, 2023, 108(17): 174513. DOI:10.1103/PhysRevB.108.174513 8. Wang, K., Sun, Y., Zhou, M. et al. Superconductivity up to 37.6 K in compressed scandium. Physical Review Research, 2023, 5(4): 043248. DOI:10.1103/PhysRevResearch.5.043248 Other cited types(0)