Nonlinear Electrical Characteristics of Antimony and Copper Doped Tin Oxide Based Varistor Ceramics
-
Abstract
The novel CuO-doped dense tin oxide varistor ceramics are investigated. The densification of tin oxide varistor ceramics could be greatly improved by doping copper oxide additives. The introduction of antimony additives into a SnO2.CuO ceramic system would make it possess excellent nonlinearity. The sample doped with 0.05mol% Sb2O3 possesses the highest nonlinearity coefficient (α=17.9) and the lowest leakage current density (JL=52μA cm-2) among all the samples. A modified defect barrier model is introduced to explain the formation of the grain-boundary barrier. The nonlinear behaviour of (Cu, Sb)-doped SnO2 varistor system could be explained by the barrier model.
Article Text
-
-
-
About This Article
Cite this article:
WANG Chun-Ming, WANG Jin-Feng, SU Wen-Bin. Nonlinear Electrical Characteristics of Antimony and Copper Doped Tin Oxide Based Varistor Ceramics[J]. Chin. Phys. Lett., 2006, 23(3): 728-731.
WANG Chun-Ming, WANG Jin-Feng, SU Wen-Bin. Nonlinear Electrical Characteristics of Antimony and Copper Doped Tin Oxide Based Varistor Ceramics[J]. Chin. Phys. Lett., 2006, 23(3): 728-731.
|
WANG Chun-Ming, WANG Jin-Feng, SU Wen-Bin. Nonlinear Electrical Characteristics of Antimony and Copper Doped Tin Oxide Based Varistor Ceramics[J]. Chin. Phys. Lett., 2006, 23(3): 728-731.
WANG Chun-Ming, WANG Jin-Feng, SU Wen-Bin. Nonlinear Electrical Characteristics of Antimony and Copper Doped Tin Oxide Based Varistor Ceramics[J]. Chin. Phys. Lett., 2006, 23(3): 728-731.
|