Darboux Transformation and Variable Separation Approach: theNizhnik-Novikov-Veselov Equation
-
Abstract
Darboux transformation (DT) is developed to systematically find variable separation solutions for the Nizhnik-Novikov-Veselov equation. Starting from a seed solution with some arbitrary functions, the one-step DT yields the variable separable solutions, which can be obtained from the truncated Painlevé analysis, and the two-step DT leads to some new variable separable solutions, which are the generalization of the known results obtained by using a guess ansatz to solve the generalized trilinear equation.
Article Text
-
-
-
About This Article
Cite this article:
HU Heng-Chun, LOU Sen-Yue, LIU Qing-Ping. Darboux Transformation and Variable Separation Approach: theNizhnik-Novikov-Veselov Equation[J]. Chin. Phys. Lett., 2003, 20(9): 1413-1415.
HU Heng-Chun, LOU Sen-Yue, LIU Qing-Ping. Darboux Transformation and Variable Separation Approach: theNizhnik-Novikov-Veselov Equation[J]. Chin. Phys. Lett., 2003, 20(9): 1413-1415.
|
HU Heng-Chun, LOU Sen-Yue, LIU Qing-Ping. Darboux Transformation and Variable Separation Approach: theNizhnik-Novikov-Veselov Equation[J]. Chin. Phys. Lett., 2003, 20(9): 1413-1415.
HU Heng-Chun, LOU Sen-Yue, LIU Qing-Ping. Darboux Transformation and Variable Separation Approach: theNizhnik-Novikov-Veselov Equation[J]. Chin. Phys. Lett., 2003, 20(9): 1413-1415.
|