Realization of Red-Organic-Light Emitting Diode by Introducing the Double Emitting Zone

  • A saturated red-organic-light emitting diode (OLED) has been realized by doping an emitting material both in the hole-transporting layer (HTL) and the electron-transporting layer (ETL) to form double emitting zone. The red dopant, 4-(Dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), was doped into the N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB) layer and the tris (8-quinolinolate) aluminum (Alq3) layer, both of which act as the emitting layers. The optimal device, with a structure of ITO/CuPc/NPB/NPB:DCJTB/Alq3:DCJTB/Alq3/LiF/Al, showed good chromaticity coordinates (x = 0.63, y = 0.36) at 8 V. Uniquely, the current efficiency of the device was relatively independent of the drive voltage in a wide range from 8 V to 20 V. That may be helpful to ameliorate the lifetime of the organic electroluminescent devices and to adjust the gray-scale for the future full-color display panel.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return