Behaviour of Cubic Nonlinear Schrödinger Equation by Using the Symplectic Method
-
Abstract
The dynamic properties of cubic nonlinear Schrödinger equation are investigated numerically by using the symplectic method. We show that the trajectories in phase space will exhibit different behaviour (elliptic orbit or homoclinic orbit) with the increase of nonlinear perturbation. We illustrate this phenomenon by mean of linearized stability analysis. The theoretical analysis is consistent with the numerical results.
Article Text
-
-
-
About This Article
Cite this article:
LIU Xue-Shen, DING Pei-Zhu. Behaviour of Cubic Nonlinear Schrödinger Equation by Using the Symplectic Method[J]. Chin. Phys. Lett., 2004, 21(2): 230-232.
LIU Xue-Shen, DING Pei-Zhu. Behaviour of Cubic Nonlinear Schrödinger Equation by Using the Symplectic Method[J]. Chin. Phys. Lett., 2004, 21(2): 230-232.
|
LIU Xue-Shen, DING Pei-Zhu. Behaviour of Cubic Nonlinear Schrödinger Equation by Using the Symplectic Method[J]. Chin. Phys. Lett., 2004, 21(2): 230-232.
LIU Xue-Shen, DING Pei-Zhu. Behaviour of Cubic Nonlinear Schrödinger Equation by Using the Symplectic Method[J]. Chin. Phys. Lett., 2004, 21(2): 230-232.
|