Dynamical Maps of a Class of Sl+l=Sl-lSnl Fibonacci Sequences
-
Abstract
The dynamical properties of a class of Sl+l=Sl-lSnl Fibonacci sequences are discussed following K. K. T. method. The recursion relations for the dynamical maps are derived. Linearization about their fixed points yields the Jacobian matrix of the mapping and the eigenvalues for the fixed points.
Article Text
-
-
-
About This Article
Cite this article:
ZHAO Baohua, LIU Tianshi. Dynamical Maps of a Class of Sl+l=Sl-lSnl Fibonacci Sequences[J]. Chin. Phys. Lett., 1991, 8(12): 648-651.
ZHAO Baohua, LIU Tianshi. Dynamical Maps of a Class of Sl+l=Sl-lSnl Fibonacci Sequences[J]. Chin. Phys. Lett., 1991, 8(12): 648-651.
|
ZHAO Baohua, LIU Tianshi. Dynamical Maps of a Class of Sl+l=Sl-lSnl Fibonacci Sequences[J]. Chin. Phys. Lett., 1991, 8(12): 648-651.
ZHAO Baohua, LIU Tianshi. Dynamical Maps of a Class of Sl+l=Sl-lSnl Fibonacci Sequences[J]. Chin. Phys. Lett., 1991, 8(12): 648-651.
|