An Alternative Form of Inverse Scattering Transform for the Korteweg-de Vries Equation

  • Published Date: August 31, 1998
  • In the viewpoint of physics, for the Korteweg-de Vries (KdV) equation, we care the evolution effects of soliton with respect to space in perturbation theory, so the new boundary condition u → 0 as t → ∞ is under our consideration. We derive Zakharov-Shabat Equation of inverse scattering for the KdV equation under new condition starting from the second Lax equation. Finally the space dependences of scattering data are determined corresponding to time dependences of scattering data in traditional case, which are bases for developing perturbation theory under new condition.

  • Article Text

  • Related Articles

    [1]CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 2012, 29(3): 030201. doi: 10.1088/0256-307X/29/3/030201
    [2]LIU Yu. New Type Soliton Solutions to Korteweg-de Vries and Benjamin-Bona-Mahony Equations [J]. Chin. Phys. Lett., 2010, 27(9): 090201. doi: 10.1088/0256-307X/27/9/090201
    [3]XU Xiao-Ge, MENG Xiang-Hua, GAO Yi-Tian. N-Soliton Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Equation [J]. Chin. Phys. Lett., 2008, 25(11): 3890-3893.
    [4]ZHANG Chun-Yi, LI Juan, MENG Xiang-Hua, XU Tao, GAO Yi-Tian. Existence of Formal Conservation Laws of a Variable-Coefficient Korteweg--de Vries Equation from Fluid Dynamics and Plasma Physics via Symbolic Computation [J]. Chin. Phys. Lett., 2008, 25(3): 878-880.
    [5]YANG Xu-Dong, RUAN Hang-Yu, LOU Sen-Yue. Nonsingular Travelling Complexiton Solutions to a Coupled Korteweg--de Vries Equation [J]. Chin. Phys. Lett., 2008, 25(3): 805-808.
    [6]YANG Chun-Nuan, YU Jia-Lu, CAI Hao, HUANG Nian-Ning. Inverse Scattering Transform for the Derivative Nonlinear Schrodinger Equation [J]. Chin. Phys. Lett., 2008, 25(2): 421-424.
    [7]ZHANG Chun-Yi, YAO Zhen-Zhi, ZHU Hong-Wu, XU Tao, LI Juan, MENG Xiang-Hua, GAO Yi-Tian. Exact Analytic N-Soliton-Like Solution in Wronskian Form for a Generalized Variable-Coefficient Korteweg--de Vries Model from Plasmas and Fluid Dynamics [J]. Chin. Phys. Lett., 2007, 24(5): 1173-1176.
    [8]CAI Hao, HUANG Nian-Ning. Green’s Function Method for Perturbed Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 2003, 20(4): 469-472.
    [9]HUANG Guo-Xiang. Korteweg-de Vries Description of Dark Solitons in Bose-Einstein Condensates [J]. Chin. Phys. Lett., 2001, 18(5): 628-630.
    [10]ZHANG Jiefang. Six Sets of Symmetries of the Variable Coefficient Modified Korteweg-de Vries Equation [J]. Chin. Phys. Lett., 1994, 11(1): 4-7.

Catalog

    Article views (1) PDF downloads (645) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return