Complex Normal-mode Frequencies of External Perturbations in Generalized Schwarzschild Geometry
-
Abstract
A modified Wentzel-Kramers-Brillouin approach is used to determine the complex normal-mode frequencies of external perturbations in generalized Schwarzschild geometry. In the λ = 1 case (Schwarzschild geometry), the agreement with other methods is excellent for the low-lying modes. On the contrary, the λ ≠ 1 case of this geometry is unstable against external perturbations.
Article Text
-
-
-
About This Article
Cite this article:
YUAN Ning-Yi, LI Xin-Zhou. Complex Normal-mode Frequencies of External Perturbations in Generalized Schwarzschild Geometry[J]. Chin. Phys. Lett., 2000, 17(4): 246-248.
YUAN Ning-Yi, LI Xin-Zhou. Complex Normal-mode Frequencies of External Perturbations in Generalized Schwarzschild Geometry[J]. Chin. Phys. Lett., 2000, 17(4): 246-248.
|
YUAN Ning-Yi, LI Xin-Zhou. Complex Normal-mode Frequencies of External Perturbations in Generalized Schwarzschild Geometry[J]. Chin. Phys. Lett., 2000, 17(4): 246-248.
YUAN Ning-Yi, LI Xin-Zhou. Complex Normal-mode Frequencies of External Perturbations in Generalized Schwarzschild Geometry[J]. Chin. Phys. Lett., 2000, 17(4): 246-248.
|