• In response to the capabilities presented by the High-Intensity Heavy Ion Accelerator Facility (HIAF) and the Accelerator-Driven Subcritical System (CiADS), as well as the proposed Chinese Advanced Nuclear Physics Research Facility (CNUF), we are assembling a consortium of experts in relevant disciplines—both domestically and internationally—to delineate high-precision physics experiments that leverage the state-of-the-art research environment afforded by CNUF. Our focus encompasses six primary domains of inquiry: hadron physics—including endeavors such as the super eta factory and investigations into light hadron structures; muon physics; neutrino physics; neutron physics; the testing of fundamental symmetries; and the exploration of quantum effects within nuclear physics, along with the utilization of vortex accelerators. We aim to foster a well-rounded portfolio of large, medium, and small-scale projects, thus unlocking new scientific avenues and optimizing the potential of the Huizhou large scientific facility. The aspiration for international leadership in scientific research will be a guiding principle in our strategic planning. This initiative will serve as a foundational reference for the Institute of Modern Physics in its strategic planning and goal-setting, ensuring alignment with its developmental objectives while striving to secure a competitive edge in technological advancement. Our ambition is to engage in substantive research within these realms of high-precision physics, to pursue groundbreaking discoveries, and to stimulate progress in China’s nuclear physics landscape, positioning Huizhou as a preeminent global hub for advanced nuclear physics research.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return