Generation of High-Quality Single-Photon Sources in Cavity Optomagnonics

  • Corresponding author:

    Xue Han, Email: xuehan@ybu.edu.cn

    Hong-Fu Wang, Email: hfwang@ybu.edu.cn

    Shou Zhang, Email: szhang@ybu.edu.cn

  • Received Date: November 08, 2024
  • Accepted Date: December 23, 2024
  • Published Date: December 31, 2024
  • Abstract We propose a scheme for generating high-quality single-photon sources utilizing the conventional photon blockade (CPB) effect in a cavity optomagnonic system with Kerr nonlinearity. The realization of the CPB effect depends on both the Kerr nonlinearity and Kerr-like nonlinearity of the optical cavity, which is converted using magneto-optical coupling. The CPB effect can be realized in a cavity optomagnonic system with weak magneto-optical coupling by modulating the strength of the Kerr nonlinearity. Notably, our scheme supports photon blockade in both the strong and weak Kerr nonlinear regimes, which broadens the range of experimental parameters. Furthermore, we explored the parameter regimes where the CPB effect could not be achieved because of the combined effects of the magneto-optical coupling and Kerr nonlinearity. We also determined the optimal driving amplitude region for generating high-quality single-photon sources. This work not only provides a novel route for realizing the CPB effect but also establishes a versatile platform for producing single-photon sources with high purity and brightness.
  • Article Text

  • Acknowledgments: This work was supported by the Natural Science Foundation of Jilin Province (Grant No. 20240101013JC), the National Natural Science Foundation of China (Grant Nos. 62071412, 62475226, 62101479, 12074330, and 12375020), and the Young Talents Support Project of the Association of Science and Technology of Jilin Province (Grant No. QT202425).
  • [1]
    Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q, Hu C M, 2019 Phys. Rev. Lett. 123:127202 doi: 10.1103/PhysRevLett.123.127202

    CrossRef Google Scholar

    [2]
    Bai L, Harder M, Chen Y P, Fan X, Xiao J Q, Hu C M, 2015 Phys. Rev. Lett. 114:227201 doi: 10.1103/PhysRevLett.114.227201

    CrossRef Google Scholar

    [3]
    Cao Y, Yan P, Huebl H, Goennenwein S T B, Bauer G E W, 2015 Phys. Rev. B 91:094423 doi: 10.1103/PhysRevB.91.094423

    CrossRef Google Scholar

    [4]
    Zhang W, Liu S T, Zhang S, Wang H F, 2024 Phys. Rev. A 109:043712 doi: 10.1103/PhysRevA.109.043712

    CrossRef Google Scholar

    [5]
    Hou R, Zhang W, Han X, Wang H F, Zhang S, 2024 Phys. Rev. A 109:033721 doi: 10.1103/PhysRevA.109.033721

    CrossRef Google Scholar

    [6]
    Ullah M, Mikki S, 2024 Phys. Rev. B 109:214303 doi: 10.1103/PhysRevB.109.214303

    CrossRef Google Scholar

    [7]
    Xu J, Zhong C, Han X, Jin D, Jiang L, Zhang X F, 2021 Phys. Rev. Lett. 126:207202 doi: 10.1103/PhysRevLett.126.207202

    CrossRef Google Scholar

    [8]
    Goryachev M, Farr W G, Creedon D L, Fan Y, Kostylev M, Tobar M E, 2014 Phys. Rev. Appl. 2:054002 doi: 10.1103/PhysRevApplied.2.054002

    CrossRef Google Scholar

    [9]
    Guan S Y, Wang H F, Yi X, 2022 npj Quantum Inf. 8:102 doi: 10.1038/s41534-022-00619-y

    CrossRef Google Scholar

    [10]
    Li J, Zhu S Y, Agarwal G S, 2018 Phys. Rev. Lett. 121:203601 doi: 10.1103/PhysRevLett.121.203601

    CrossRef Google Scholar

    [11]
    Zhang W, Wang T, Han X, Zhang S, Wang H F, 2022 Opt. Express 30:10969 doi: 10.1364/OE.453787

    CrossRef Google Scholar

    [12]
    Zhang W, Wang D Y, Bai C H, Wang T, Zhang S, Wang H F, 2021 Opt. Express 29:11773 doi: 10.1364/OE.418531

    CrossRef Google Scholar

    [13]
    Cheng J, Liu Y M, Yi X, Wang H F, 2022 Ann. Phys. 534:2100493 doi: 10.1002/andp.202100493

    CrossRef Google Scholar

    [14]
    Li J, Zhu S Y, Agarwal G S, 2019 Phys. Rev. A 99:021801 doi: 10.1103/PhysRevA.99.021801

    CrossRef Google Scholar

    [15]
    Liu Z X, Xiong H, Wu Y, 2019 Phys. Rev. B 100:134421 doi: 10.1103/PhysRevB.100.134421

    CrossRef Google Scholar

    [16]
    Wang L, Yang Z X, Liu Y M, Bai C H, Wang D Y, Zhang S, Wang H F, 2020 Ann. Phys. 532:2000028 doi: 10.1002/andp.202000028

    CrossRef Google Scholar

    [17]
    Zhang H X, Zhu S Y, Zhan J, Wang X J, Wang Y, Yao T, Mezin N I, Song B, 2023 Chin. Phys. Lett. 40:127801 doi: 10.1088/0256-307X/40/12/127801

    CrossRef Google Scholar

    [18]
    Osada A, Hisatomi R, Noguchi A, Tabuchi Y, Yamazaki R, Usami K, Sadgrove M, Yalla R, Nomura M, Nakamura Y, 2016 Phys. Rev. Lett. 116:223601 doi: 10.1103/PhysRevLett.116.223601

    CrossRef Google Scholar

    [19]
    Sharma S, Rameshti B Z, Blanter Y M, Bauer G E W, 2019 Phys. Rev. B 99:214423 doi: 10.1103/PhysRevB.99.214423

    CrossRef Google Scholar

    [20]
    Xu W L, Gao Y P, Cao C, Wang T J, Wang C, 2020 Phys. Rev. A 102:043519 doi: 10.1103/PhysRevA.102.043519

    CrossRef Google Scholar

    [21]
    Wu W J, Wang Y P, Wu J Z, Li J, You J Q, 2021 Phys. Rev. A 104:023711 doi: 10.1103/PhysRevA.104.023711

    CrossRef Google Scholar

    [22]
    Wang K, Gao Y P, Jiao R Z, Wang C, 2022 Front Phys. 17:42201 doi: 10.1007/s11467-022-1165-2

    CrossRef Google Scholar

    [23]
    Hisatomi R, Osada A, Tabuchi Y, Ishikawa T, Noguchi A, Yamazaki R, Usami K, Nakamura Y, 2016 Phys. Rev. B 93:174427 doi: 10.1103/PhysRevB.93.174427

    CrossRef Google Scholar

    [24]
    Chai C Z, Shen Z, Zhang Y L, Zhao H Q, Guo G C, Zou C L, Dong C H, 2022 Photonics Res. 10:820 doi: 10.1364/PRJ.446226

    CrossRef Google Scholar

    [25]
    Liu T Y, Zhang X F, Tang H X, Flatté M E, 2016 Phys. Rev. B 94:060405 doi: 10.1103/PhysRevB.94.060405

    CrossRef Google Scholar

    [26]
    Viola-usminskiy S, Tang H X, Marquardt F, 2016 Phys. Rev. A 94:033821 doi: 10.1103/PhysRevA.94.033821

    CrossRef Google Scholar

    [27]
    Zhang X F, Zhu N, Zou C L, Tang H X, 2016 Phys. Rev. Lett. 117:123605 doi: 10.1103/PhysRevLett.117.123605

    CrossRef Google Scholar

    [28]
    Osada A, Gloppe A, Hisatomi R, Noguchi A, Yamazaki R, Nomura M, Nakamura Y, Usami K, 2018 Phys. Rev. Lett. 120:133602 doi: 10.1103/PhysRevLett.120.133602

    CrossRef Google Scholar

    [29]
    Yuan Z H, Chen Y J, Han J X, Wu J L, Li W Q, Xia Y, Jiang Y Y, Song J, 2023 Phys. Rev. B 108:134409 doi: 10.1103/PhysRevB.108.134409

    CrossRef Google Scholar

    [30]
    Xu W L, Liu X F, Sun Y, Gao Y P, Wang T J, Wang C, 2020 Phys. Rev. E 101:012205 doi: 10.1103/PhysRevE.101.012205

    CrossRef Google Scholar

    [31]
    Liu Z X, You C, Wang B, Xiong H, Wu Y, 2019 Opt. Lett. 44:507 doi: 10.1364/OL.44.000507

    CrossRef Google Scholar

    [32]
    Gao Y P, Cao C, Duan Y W, Liu X F, Pang T T, Wang T J, Wang C, 2020 Nanophotonics 9:1953 doi: 10.1515/nanoph-2019-0441

    CrossRef Google Scholar

    [33]
    Hennrich M, Kuhn A, Rempe G, 2005 Phys. Rev. Lett. 94:053604 doi: 10.1103/PhysRevLett.94.053604

    CrossRef Google Scholar

    [34]
    Hamsen C, Tolazzi K N, Wilk T, Rempe G, 2017 Phys. Rev. Lett. 118:133604 doi: 10.1103/PhysRevLett.118.133604

    CrossRef Google Scholar

    [35]
    Zhang W, Wang T, Liu S T, Zhang S, Wang H F, 2023 Sci. China Phys. Mech. Astron. 66:240313 doi: 10.1007/s11433-022-2054-0

    CrossRef Google Scholar

    [36]
    Winger M, Volz T, Tarel G, Portolan S, Badolato A, Hennessy K J, Hu E L, Beveratos A, Finley J, Savona V, Imamoǧlu A, 2009 Phys. Rev. Lett. 103:207403 doi: 10.1103/PhysRevLett.103.207403

    CrossRef Google Scholar

    [37]
    Shen S T, Li J H, Wu Y, 2020 Phys. Rev. A 101:023805 doi: 10.1103/PhysRevA.101.023805

    CrossRef Google Scholar

    [38]
    Liao J Q, Nori F, 2013 Phys. Rev. A 88:023853 doi: 10.1103/PhysRevA.88.023853

    CrossRef Google Scholar

    [39]
    Wang D Y, Bai C H, Han X, Liu S T, Zhang S, Wang H F, 2020 Opt. Lett. 45:2604 doi: 10.1364/OL.392514

    CrossRef Google Scholar

    [40]
    Wang D Y, Bai C H, Xing Y, Liu S T, Zhang S, Wang H F, 2020 Phys. Rev. A 102:043705 doi: 10.1103/PhysRevA.102.043705

    CrossRef Google Scholar

    [41]
    Xie H, He L W, Shang X, Lin G W, Lin X M, 2022 Phys. Rev. A 106:053707 doi: 10.1103/PhysRevA.106.053707

    CrossRef Google Scholar

  • Related Articles

    [1]YANG Jing, DU Shi-Feng, ZHANG Jing-Yuan, CAO Dong, CUI Da-Fu, PENG Qin-Jun, XU Zu-Yan. Tomographic Imaging and Three-Dimensional Reconstruction Based on a High-Gain Optical Parametric Amplifier [J]. Chin. Phys. Lett., 2012, 29(5): 054213. doi: 10.1088/0256-307X/29/5/054213
    [2]Gabriela A. Casas, Paulo C. Rech. Numerical Study of a Three-Dimensional Hénon Map [J]. Chin. Phys. Lett., 2011, 28(1): 010203. doi: 10.1088/0256-307X/28/1/010203
    [3]ZHANG Li-Wei, YAN Ling-Ling, ZHAO Yu-Huan, LIU Li. Transmission Properties of One-Dimensional Photonic Crystals Containing Anisotropic Metamaterials [J]. Chin. Phys. Lett., 2010, 27(6): 064101. doi: 10.1088/0256-307X/27/6/064101
    [4]ZHAO Yan-Zhong, SUN Hua-Yan, YU Xia-Qiong, FAN Meng-Shan. Three-Dimensional Analytical Formula for Oblique and Off-Axis Gaussian Beams Propagating through a Cat-Eye Optical Lens [J]. Chin. Phys. Lett., 2010, 27(3): 034101. doi: 10.1088/0256-307X/27/3/034101
    [5]JIANG Lai-Dong, DAI Qiao-Feng, FENG Tian-Hua, LIU Jin, WU Li-Jun, LAN Sheng, A. V. Gopal, V. A. Trofimov. In-Situ Characterization of Three-Dimensional Optical Matters by Light Diffraction [J]. Chin. Phys. Lett., 2009, 26(7): 074201. doi: 10.1088/0256-307X/26/7/074201
    [6]LIU Huan, YAO Jian-Quan, ZHENG Fang-Hua, XU De-Gang, WANG Peng. A Novel Woodpile Three-Dimensional Terahertz Photonic Crystal [J]. Chin. Phys. Lett., 2007, 24(5): 1290-1293.
    [7]ZHAO Xiao-Feng, LI Cheng-Fang, RUAN Hao. Improvement of Three-Dimensional Resolution in Optical Data Storage by Combination of Two Annular Binary Phase Filters [J]. Chin. Phys. Lett., 2004, 21(8): 1515-1517.
    [8]LI Jun-Qing, LI She, WANG Xiao-Ou, ZHENG Yang-Dong, LI Chun-Fei. Self-Induced Optical Rotation of Solitons in a Chiral Fibre [J]. Chin. Phys. Lett., 2004, 21(4): 675-678.
    [9]LI Cheng-De, WANG Dan-Ling, LUO Le, YANG Hong, XIA Zong-Ju, GONG Qi-Huang. Feasibility of Femtosecond Laser Writing Multi-Layered Bit Planes in Fused Silica for Three-Dimensional Optical Data Storage [J]. Chin. Phys. Lett., 2001, 18(4): 541-543.
    [10]LUO Xin-Lian, PENG Qiu-He, LONG Min, PENG Fang, ZOU Zhi-Gang. On Three-Dimensional Spiral Galaxies [J]. Chin. Phys. Lett., 2000, 17(12): 932-934.

Catalog

    Figures(4)  /  Tables(2)

    Article views (35) PDF downloads (24) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return