Higher Dimensional Camassa–Holm Equations
 
             
            
                    
                                        
            		- 
Abstract
    Utilizing some conservation laws of the (1+1)-dimensional Camassa–Holm (CH) equation and/or its reciprocal forms, some (n+1)-dimensional CH equations for n ≥ 1 are constructed by a modified deformation algorithm. The Lax integrability can be proven by applying the same deformation algorithm to the Lax pair of the (1+1)-dimensional CH equation. A novel type of peakon solution is implicitly given and expressed by the LambertW function.
 
Article Text
                    
                    - 
                          
- 
                    
- 
     About This Article
         Cite this article:
            
                
                    
                        S. Y. Lou, Man Jia, Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J].  Chin. Phys. Lett., 2023, 40(2): 020201.  DOI: 10.1088/0256-307X/40/2/020201
                        
                            | S. Y. Lou, Man Jia, Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 020201. DOI: 10.1088/0256-307X/40/2/020201 |  
 
 
                    
                        S. Y. Lou, Man Jia, Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 020201. DOI: 10.1088/0256-307X/40/2/020201
                     
                        
                            | S. Y. Lou, Man Jia, Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 020201. DOI: 10.1088/0256-307X/40/2/020201 |