Higher Dimensional Camassa–Holm Equations
-
Abstract
Utilizing some conservation laws of the (1+1)-dimensional Camassa–Holm (CH) equation and/or its reciprocal forms, some (n+1)-dimensional CH equations for n ≥ 1 are constructed by a modified deformation algorithm. The Lax integrability can be proven by applying the same deformation algorithm to the Lax pair of the (1+1)-dimensional CH equation. A novel type of peakon solution is implicitly given and expressed by the LambertW function.
Article Text
-
-
-
About This Article
Cite this article:
S. Y. Lou, Man Jia, Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 020201. DOI: 10.1088/0256-307X/40/2/020201
S. Y. Lou, Man Jia, Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 020201. DOI: 10.1088/0256-307X/40/2/020201
|
S. Y. Lou, Man Jia, Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 020201. DOI: 10.1088/0256-307X/40/2/020201
S. Y. Lou, Man Jia, Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 020201. DOI: 10.1088/0256-307X/40/2/020201
|