Processing math: 100%

Observation of Charge Density Wave in Layered Hexagonal Cu1.89Te Single Crystal

  • Received Date: October 01, 2022
  • Published Date: December 31, 2022
  • We report comprehensive transport, electron microscopy and Raman spectroscopy studies on transition-metal chalcogenides Cu1.89Te single crystals. The metallic Cu1.89Te displays successive metal-semiconductor transitions at low temperatures and almost ideal linear MR when magnetic field up to 33 T. Through the electron diffraction patterns, the stable room-temperature phase is identified as a 3×3×2 modulated superstructure based on the Nowotny hexagonal structure. The superlattice spots of transmission electron microscopy and scanning tunneling microscopy clearly show the structural transitions from the room-temperature commensurate I phase, named as C-I phase, to the low temperature commensurate II (C-II) phase. All the results can be understood in terms of charge density wave (CDW) instability, yielding intuitive evidences for the CDW formations in Cu1.89Te. The additional Raman modes below room temperature further reveal that the zone-folded phonon modes may play an important role on the CDW transitions. Our research sheds light on the novel electron features of Cu1.89Te at low temperature, and may provide potential applications for future nano-devices.
  • Article Text

  • [1]
    Zhang W, Yu R, Feng W, Yao Y, Weng H, Dai X, and Fang Z 2011 Phys. Rev. Lett. 106 156808

    Google Scholar

    [2]
    Liu H L, Shi X, Xu F F, Zhang L F, Zhang W Q, Chen L D, Li Q, Uher C, Day T, and Snyder G J 2012 Nat. Mater. 11 422

    Google Scholar

    [3]
    Nguyen M C, Choi J, Zhao X, Wang C Z, Zhang Z, and Ho K M 2013 Phys. Rev. Lett. 111 165502

    Google Scholar

    [4]
    Nethravathi C, Rajamathi C R, Rajamathi M, Maki R, Mori T, Golberg D, and Bando Y 2014 J. Mater. Chem. A 2 985

    Google Scholar

    [5]
    Kikuchi H, Iyetomi H, and Hasegawa A 1997 J. Phys.: Condens.: Matter 9 6031

    Google Scholar

    [6]
    Byeon D, Sobota R, Kévin D, Choi S, Hirata K, Adachi M, Kiyama M, Matsuura T, Yamamoto Y, Matsunami M, and Takeuchi T 2019 Nat. Commun. 10 72

    Google Scholar

    [7]
    He Y, Zhang T, Shi X, Wei S, and Chen L 2015 NPG Asia Mater. 7 e210

    Google Scholar

    [8]
    Kikuchi H, Iyetomi H, and Hasegawa A 1998 J. Phys.: Condens. Matter 10 11439

    Google Scholar

    [9]
    Vouroutzis N and Manolikas C 1989 Phys. Status Solidi A 111 491

    Google Scholar

    [10]
    Vouroutzis N, Frangis N, and Manolikaset C 2005 Phys. Status Solidi A 202 271

    Google Scholar

    [11]
    Asadov Y G, Rustamova L V, Gasimov G B, Jafarov K M, and Babajev A G 1992 Phase Transit. 38 247

    Google Scholar

    [12]
    Nowotny H 1946 Int. J. Mater. Res. 37 40

    Google Scholar

    [13]
    Baranova R V, Avilov A S, and Pinsker Z G 1973 Kristallografiya 18 1169

    Google Scholar

    [14]
    Matar S, Weihrich R, Kurowski D, and Pfitzner A 2004 Solid State Sci. 6 15

    Google Scholar

    [15]
    Yu L, Luo K, Chen S, and Duan C G 2015 CrystE NgComm. 17 2878

    Google Scholar

    [16]
    Sirusi A A, Page A, Uher C, and Ross Jr J H 2017 J. Phys. Chem. Solids 106 52

    Google Scholar

    [17]
    Qian K, Gao L, Li H, Zhang S, Yan J H, Liu C, Wang J O, Qian T, Ding H, Zhang Y Y, Lin X, Du S X, and Gao H J 2020 Chin. Phys. B 29 018104

    Google Scholar

    [18]
    Tong Y F, Bouaziz M, Zhang W, Obeid B, Loncle A, Oughaddou H, Enriquez H, Chaouchi K, Esaulov V, Chen Z S, Xiong H Q, Cheng Y C, and Bendounan A 2020 2D Mater. 7 035010

    Google Scholar

    [19]
    Liu S, Xia W, Huang K, Pei D, Deng T, Liang A J, Jiang J, Yang H F, Zhang J, Zheng H J, Chen Y J, Yang L X, Guo Y F, Wang M X, Liu Z K, and Chen Y L 2021 Phys. Rev. B 103 115127

    Google Scholar

    [20]
    Feng J Q, Gao H Y, Li T, Tan X, Xu P, Li M L, He L, and Ma D L 2021 ACS Nano 15 3415

    Google Scholar

    [21]
    Zhang X, Gu Q Q, Sun H, and Luo T 2020 Phys. Rev. B 102 035125

    Google Scholar

    [22]
    Zhang Y G, Sa B H, Zhou J, and Sun Z M 2014 Comput. Mater. Sci. 81 163

    Google Scholar

    [23]
    Sirusi A A, Ballikaya B, Chen J, Uher C, and Ross J H 2016 J. Phys. Chem. C 120 14549

    Google Scholar

    [24]
    Ma Y D, Kou L Z, Dai Y, and Heine T 2016 Phys. Rev. B 93 235451

    Google Scholar

    [25]
    Zhao X X and Mi Y M 2021 Phys. Chem. Chem. Phys. 23 3116

    Google Scholar

    [26]
    Sirusi A A, Page A, Steinke L, Aronson M C, Uher C, and Ross J H 2018 AIP Adv. 8 055135

    Google Scholar

    [27]
    Zhang K, Liu X, Zhang H, Deng K, Yan M, Yao W, Zheng M, Schwier E F, Shimada K, Denlinger J D, Wu Y, Duan W, and Zhou S 2018 Phys. Rev. Lett. 121 206402

    Google Scholar

    [28]
    Kuo C N, Huang R Y, Kuo Y K, and Lue C S 2020 Phys. Rev. B 102 155137

    Google Scholar

    [29]
    Sinchenko A A, Monceau P, and Crozes T 2012 Phys. Rev. Lett. 108 046402

    Google Scholar

    [30]
    Mutka H, Zuppiroli L, M, and Bourgoin J C 1981 Phys. Rev. B 23 10

    Google Scholar

    [31]
    Chen H, Li Z, Guo L, and Chen X 2017 Europhys. Lett. 117 27009

    Google Scholar

    [32]
    Kolincio K K, Roman M, and Klimczuk T 2019 Phys. Rev. B 99 205127

    Google Scholar

    [33]
    Tian L, Quinn G, Mazhar N A, Minhao L, Cava R J, and Ong N P 2015 Nat. Mater. 14 280

    Google Scholar

    [34]
    Shekhar C, Nayak A K, Sun Y, Schmidt M, Nicklas M, Leermakers I, Zeitler U, Skourski Y, Wosnitza J, Liu Z, Chen Y, Schnelle W, Borrmann H, Grin Y, Felser C, and Yan B 2015 Nat. Phys. 11 645

    Google Scholar

    [35]
    Zhang X, Luo T C, and Hu X Y 2019 Chin. Phys. Lett. 36 057402

    Google Scholar

    [36]
    Zhao Y F, Liu H W, and Zhang C L 2015 Phys. Rev. X 5 031037

    Google Scholar

    [37]
    Wang J and DaSilva A M 2011 Phys. Rev. B 83 245438

    Google Scholar

    [38]
    Abrikosov A A 2000 Europhys. Lett. 49 789

    Google Scholar

    [39]
    Sinchenko A A, Grigoriev P D, Lejay P, and Monceau P 2017 Phys. Rev. B 96 245129

    Google Scholar

    [40]
    Frolov A V, Orlov A P, Grigoriev P D, Zverev V N, Sinchenko A A, and Monceau P 2018 JETP Lett. 107 488

    Google Scholar

    [41]
    Feng Y J, Wang Y S, Silevitch D M, Yan J Q, and Rosenbaum T F 2019 Proc. Natl. Acad. Sci. USA 116 11201

    Google Scholar

    [42]
    Peierls R E 1930 Ann. Phys. Leipzig 396 121

    Google Scholar

    [43]
    Varma C M and Simons A L 1983 Phys. Rev. Lett. 51 138

    Google Scholar

    [44]
    Gor'kov L P 2012 Phys. Rev. B 85 165142

    Google Scholar

    [45]
    Weber F, Rosenkranz S, Castellan J P, Osborn R, Hott R, Heid R, Bohnen K P, Egami P, Said A H, and Reznik D 2011 Phys. Rev. Lett. 107 107403

    Google Scholar

    [46]
    Eiter H M, Lavagnini M, Hackl R, Nowadnick E A, Kemper A F, Devereaux T P, Chu J H, Analytis J G, Fisher I R, and Degiorgi L 2013 Proc. Natl. Acad. Sci. USA 110 64

    Google Scholar

    [47]
    Gleason S L, Gim Y, Byrum T, Kogar A, Abbamonte P, Fradkin E, MacDougall G J, Van Harlingen D J, Zhu X, Petrovic C, and Cooper S L 2015 Phys. Rev. B 91 155124

    Google Scholar

    [48]
    Tan P H 2012 Nat. Mater. 11 294

    Google Scholar

    [49]
    Puretzky A A, Liang L, Li X, Xiao K, Wang K, Masoud M S, Basile L, Idrobo J C, Sumpter B G, Meunier V, and Geohegan D B 2015 ACS Nano 9 6 6333

    Google Scholar

    [50]
    Snow C S, Karpus J F, Chiang T C, Kidd T E, and Cooper S L 2003 Phys. Rev. Lett. 91 136402

    Google Scholar

    [51]
    Rui H, Okamoto J, Ye Z, Ye G, Anderson H, Dai X, Wu X, Hu J, Liu Y, Lu W, Sun Y, Pasupathy A N, and Tsen A W 2016 Phys. Rev. B 94 201108R

    Google Scholar

    [52]
    Measson M A, Gallais Y, Cazayous M, Clair B, Rodière P, Cario L, and Sacuto A 2014 Phys. Rev. B 89 060503R

    Google Scholar

    [53]
    Zhu X D, Ning W, Li L, Ling L, Zhang R, Zhang J, Wang K L, Pi L, Ma Y, Du H, Tian M, Sun Y, Petrovic C, and Zhang Y 2016 Sci. Rep. 6 26974

    Google Scholar

  • Related Articles

    [1]Jian-Ping Shen, Yang Chen, Liang Chen, Feng-Yang Xing, Feng-Bo Zhang, Rui-Ze Xia, Huan-Yu Zuo, Feng Xiong, Rong-Rong Jiang. A high peak power passively Q-switched Nd:YAG dual-rod 532 nm laser based on LED side pumping [J]. Chin. Phys. Lett., 2025, 42(4): 044202. doi: 10.1088/0256-307X/42/4/044202
    [2]ZENG Hong-Jin, LIU Ge, LU Yuan-Rong, CHEN Wei, ZHOU Quan-Feng, ZHU Kun, XIA Wen-Long, SHI Ben-Liang, GAO Shu-Li, YAN Xue-Qing, GUO Zhi-Yu, CHEN Jia-Er. Radio-Frequency Power Test of a Four-Rod RFQ Accelerator for PKUNIFTY [J]. Chin. Phys. Lett., 2012, 29(6): 062901. doi: 10.1088/0256-307X/29/6/062901
    [3]LU Yuan-Rong, CHEN Wei, NIE Yuan-Cun, LIU Ge, GAO Shu-Li, ZENG Hong-Jin, YAN Xue-Qing, CHEN Jia-Er. Power Test of the Ladder IH-RFQ Accelerator at Peking University [J]. Chin. Phys. Lett., 2011, 28(7): 072901. doi: 10.1088/0256-307X/28/7/072901
    [4]LI Zhong-Yang, YAO Jian-Quan, LÜ Da, XU De-Gang, WANG Jing-Li, BING Pi-Bin. High-Power Terahertz Radiation Based on a Compact Eudipleural THz-Wave Parametric Oscillator [J]. Chin. Phys. Lett., 2011, 28(6): 064209. doi: 10.1088/0256-307X/28/6/064209
    [5]LIN Xu-Ling, ZHANG Jian-Bing, LU YU, LUO Feng, LU Shan-Liang, YU Tie-Min, DAI Zhi-Min. Characterizing THz Coherent Synchrotron Radiation at Femtosecond Linear Accelerator [J]. Chin. Phys. Lett., 2009, 26(12): 124101. doi: 10.1088/0256-307X/26/12/124101
    [6]XU Shi-Xiang, DAI Xiao-Ming, YANG Xiao-Hua, LI Jing-Zhen. Effects of Pumping Sizes on THz Radiation Based on Ultrashort Light Pulse Optical Rectification for High Spatial Resolution T-Ray Imaging [J]. Chin. Phys. Lett., 2008, 25(12): 4262-4265.
    [7]SHI Wei, HOU Lei. Theoretical Study of Field Intensity of THz Radiation from GaAs Large-Aperture Photoconductive Antennas [J]. Chin. Phys. Lett., 2006, 23(10): 2867-2870.
    [8]XING Qi-Rong, LI Shu-Xin, ZHANG Wei-Li, LANG Li-Ying, MAO Fang-Lin, XU Shi-Xiang, CHAI Lu, WANG Qing-Yue. Transmission Properties of THz Radiation Pulses through Very Deep Zero-Order Metallic Gratings [J]. Chin. Phys. Lett., 2005, 22(7): 1824-1824.
    [9]XU Zuyan, DENG Daoqun, ZHAO Tienan, WU Baichang, YOU Guiming. HIGH POWER TUNABLE COHERENT UV RADIATION BY SUM-FREQUENCY IN β-BaB2O4 [J]. Chin. Phys. Lett., 1989, 6(2): 68-71.
    [10]XU Zuyan, DENG Daoqun, ZHAO Tienan, SHOU Hansen. HIGH POWER TUNABLE UV LASER RADIATION PRODUCED BY SECOND-HARMONIC GENERATION IN β-BaB2O4 [J]. Chin. Phys. Lett., 1988, 5(9): 389-392.

Catalog

    Article views (214) PDF downloads (227) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return