Superconductivity in Kagome Metal YRuSi with Strong Electron Correlations
-
Abstract
We report the detailed physical properties of YRuSi with the Ru kagome lattice at normal and superconducting states. The results of resistivity and magnetization show that YRuSi is a type-II bulk superconductor with K. The specific heat measurement further suggests that this superconductivity could originate from the weak or moderate electron-phonon coupling. On the other hand, both large Kadawaki–Woods ratio and Wilson ratio indicate that there is a strong electron correlation effect in this system, which may have a connection with the featured flat band of kagome lattice. -
-
References
[1] Balents L 2010 Nature 464 199 doi: 10.1038/nature08917[2] Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R and Senthil T 2020 Science 367 eaay0668 doi: 10.1126/science.aay0668[3] Shores M P, Nytko E A, Bartlett B M and Nocera D G 2005 J. Am. Chem. Soc. 127 13462 doi: 10.1021/ja053891p[4] Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406 doi: 10.1038/nature11659[5] Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638 doi: 10.1038/nature25987[6] Kang M, Ye L, Fang S, You J S, Levitan A, Han M, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, van den Brink J, Richter M, Ghimire M P, Checkelsky J G and Comin R 2020 Nat. Mater. 19 163 doi: 10.1038/s41563-019-0531-0[7] Liu Z H, Li M, Wang Q, Wang G W, Wen C H P, Jiang K, Lu X L, Yan S C, Huang Y B, Shen D W, Yin J X, Wang Z Q, Yin Z P, Lei H C and Wang S C 2020 Nat. Commun. 11 4002 doi: 10.1038/s41467-020-17462-4[8] Kang M, Fang S, Ye L, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G and Comin R 2020 Nat. Commun. 11 4004 doi: 10.1038/s41467-020-17465-1[9] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212 doi: 10.1038/nature15723[10] Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kübler J, Felser C and Parkin S S P 2016 Sci. Adv. 2 e1501870 doi: 10.1126/sciadv.1501870[11] Wang Q, Sun S S, Zhang X, Pang F and Lei H C 2016 Phys. Rev. B 94 075135 doi: 10.1103/PhysRevB.94.075135[12] Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125 doi: 10.1038/s41567-018-0234-5[13] Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C and Lei H C 2018 Nat. Commun. 9 3681 doi: 10.1038/s41467-018-06088-2[14] Yin J X, Zhang S S, Li H, Jiang K, Chang G, Zhang B, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z, Jia S, Wang W and Hasan M Z 2018 Nature 562 91 doi: 10.1038/s41586-018-0502-7[15] Yin J X, Ma W, Cochran T A, Xu X, Zhang S S, Tien H J, Shumiya N, Cheng G, Jiang K, Lian B, Song Z, Chang G, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H, Lin H, Neupert T, Wang Z, Yao N, Chang T R, Jia S and Hasan M Z 2020 Nature 583 533 doi: 10.1038/s41586-020-2482-7[16] Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407 doi: 10.1103/PhysRevMaterials.3.094407[17] Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F and Wilson S D 2020 Phys. Rev. Lett. 125 247002 doi: 10.1103/PhysRevLett.125.247002[18] Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801 doi: 10.1103/PhysRevMaterials.5.034801[19] Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H and Lei H C 2021 Chin. Phys. Lett. 38 037403 doi: 10.1088/0256-307X/38/3/037403[20] Ko W H, Lee P A and Wen X G 2009 Phys. Rev. B 79 214502 doi: 10.1103/PhysRevB.79.214502[21] Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135 doi: 10.1103/PhysRevB.87.115135[22] Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405 doi: 10.1103/PhysRevLett.110.126405[23] Mazin I I, Jeschke H O, Lechermann F, Lee H, Fink M, Thomale R and Valentí R 2014 Nat. Commun. 5 4261 doi: 10.1038/ncomms5261[24] Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, He J, Liu X, Zhang S S, Chang G, Belopolski I, Zhang Q, Hossain M S, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Xu G, Wang Z, Neupert T, Wilson S D and Hasan M Z 2021 Nat. Mater. 20 1353 doi: 10.1038/s41563-021-01034-y[25] Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Yin Q, Gong C, Tu Z, Lei H, Ma S, Zhang H, Ni S, Tan H, Shen C, Dong X, Yan B, Wang Z and Gao H J 2021 Nature 599 222 doi: 10.1038/s41586-021-03983-5[26] Rapp Ö, Invarsson J and Claeson T 1974 Phys. Lett. A 50 159 doi: 10.1016/0375-96017490770-1[27] Sun S S, Liu K and Lei H C 2016 J. Phys.: Condens. Matter 28 085701 doi: 10.1088/0953-8984/28/8/085701[28] Gong C S, Wang Q, Wang S H and Lei H C 2020 J. Phys.: Condens. Matter 32 295601 doi: 10.1088/1361-648X/ab7c12[29] Ku H C, Meisner G P, Acker F and Johnston D C 1980 Solid State Commun. 35 91 doi: 10.1016/0038-10988090221-5[30] Barz H 1980 Mater. Res. Bull. 15 1489 doi: 10.1016/0025-54088090107-5[31] Escorne M, Mauger A, Gupta L C and Godart C 1994 Phys. Rev. B 49 12051 doi: 10.1103/PhysRevB.49.12051[32] Li S, Zeng B, Wan X G, Tao J, Han F, Yang H, Wang Z H and Wen H H 2011 Phys. Rev. B 84 214527 doi: 10.1103/PhysRevB.84.214527[33] Li B X, Li S and Wen H H 2016 Phys. Rev. B 94 094523 doi: 10.1103/PhysRevB.94.094523[34] Mielke III C, Qin Y, Yin J X, Nakamura H, Das D, Guo K, Khasanov R, Chang J, Wang Z Q, Jia S, Nakatsuji S, Amato A, Luetkens H, Xu G, Hasan M Z and Guguchia Z 2021 Phys. Rev. Mater. 5 034803 doi: 10.1103/PhysRevMaterials.5.034803[35] Vandenberg J M and Barz H 1980 Mater. Res. Bull. 15 1493 doi: 10.1016/0025-54088090108-7[36] TOPAS Version 4; Bruker AXS, Karlsruhe, Germany 2007.[37] Aharoni A 1998 J. Appl. Phys. 83 3432 doi: 10.1063/1.367113[38] Ioffe A F and Regel A R 1961 Prog. Semicond. 4 237[39] Zverev V N, Korobenko A V, Sun G L, Sun D L, Lin C T and Boris A V 2009 JETP Lett. 90 130 doi: 10.1134/S0021364009140100[40] Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295 doi: 10.1103/PhysRev.147.295[41] Maki K 1966 Phys. Rev. 148 362 doi: 10.1103/PhysRev.148.362[42] Yang H D and Lin J Y 2001 J. Phys. Chem. Solids 62 1861 doi: 10.1016/S0022-36970100118-4[43] McMillan W L 1968 Phys. Rev. 167 331 doi: 10.1103/PhysRev.167.331[44] Kadowaki K and Woods S B 1986 Solid State Commun. 58 507 doi: 10.1016/0038-10988690785-4[45] Wilson K G 1975 Rev. Mod. Phys. 47 773 doi: 10.1103/RevModPhys.47.773[46] Jacko A C, Fjærestad J O and Powell B J 2009 Nat. Phys. 5 422 doi: 10.1038/nphys1249 -
Related Articles
[1] Yuan Yin, Mei Wu, Xiang Ding, Peiyi He, Qize Li, Xiaowen Zhang, Ruixue Zhu, Ruilin Mao, Xiaoyue Gao, Ruochen Shi, Liang Qiao, Peng Gao. Electron microscopy and spectroscopy investigation of atomic, electronic, and phonon structures of NdNiO2/SrTiO3 interface [J]. Chin. Phys. Lett., 2025, 42(4): 047402. doi: 10.1088/0256-307X/42/4/047402 [2] Shunli Ni, Sheng Ma, Yuhang Zhang, Jie Yuan, Haitao Yang, Zouyouwei Lu, Ningning Wang, Jianping Sun, Zhen Zhao, Dong Li, Shaobo Liu, Hua Zhang, Hui Chen, Kui Jin, Jinguang Cheng, Li Yu, Fang Zhou, Xiaoli Dong, Jiangping Hu, Hong-Jun Gao, Zhongxian Zhao. Anisotropic Superconducting Properties of Kagome Metal CsV3Sb5 [J]. Chin. Phys. Lett., 2021, 38(5): 057403. doi: 10.1088/0256-307X/38/5/057403 [3] KANG Xiu-Bao, TIAN Tai-He, WANG Zhi-Guo. Optical Nonlinearity of Subwavelength Metal-dielectric Gratings: Effects of Strong Anisotropy [J]. Chin. Phys. Lett., 2011, 28(9): 094206. doi: 10.1088/0256-307X/28/9/094206 [4] WEI Meng, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, PAN Xu, HOU Qi-Feng, WANG Zhan-Guo. Growth of 2 µm Crack-Free GaN on Si(111) Substrates by Metal Organic Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2011, 28(4): 048102. doi: 10.1088/0256-307X/28/4/048102 [5] HU Lian, K.Y. Szeto, SUN Xin. Influence of Strong Electron-Electron Interaction on the Peierls Transition [J]. Chin. Phys. Lett., 1997, 14(1): 63-66. [6] HU Xiaoming, LIN Zhangda. Observation of the Si(100)-(2 x 2) Phase and Measurements of Low Energy Electron Diffraction I-V Curves [J]. Chin. Phys. Lett., 1995, 12(9): 557-560. [7] XU Tiefeng, CHEN Feng, YAN Dadong, LI Wenzhu (Wenzhou Li). Electron-Phonon Vertex Corrections and Superconductivity inAlkali-Metal-Doped C60 Solids [J]. Chin. Phys. Lett., 1994, 11(4): 242-245. [8] CHEN Changfeng. COMMENT ON SUPERCONDUCTIVITY CAUSED BY STRONG CORRELATION [J]. Chin. Phys. Lett., 1989, 6(2): 96-96. [9] WEI Chongde, LIN Chin, ZHOU Yaqin, WU Ke, Xue Lixin. SUPERCONDUCTIVITY OF LaBa2-xCaxCu3Oy SYSTEM [J]. Chin. Phys. Lett., 1988, 5(7): 301-304. [10] FENG Shiping, MA Benkun. SUPERCONDUCTIVITY CAUSED BY STRONG CORRELATION [J]. Chin. Phys. Lett., 1988, 5(5): 229-232. -
Cited by
Periodical cited type(12)
1. Shu, H., Zhong, W., Feng, J. et al. Observation of superconductivity and ferromagnetism in high-entropy carbide ceramics. Acta Materialia, 2025. DOI:10.1016/j.actamat.2024.120693 2. Ushioda, T., Muranaka, T. Two-gap superconducting states of LaRu3Si2. Physica C: Superconductivity and its Applications, 2024. DOI:10.1016/j.physc.2024.1354583 3. Zhao, Z., Yao, J., Xu, R. et al. Surface-sensitive electronic structure of kagome superconductor CsV3Sb5. Chinese Physics B, 2024, 33(10): 107403. DOI:10.1088/1674-1056/ad7016 4. Meena, P.K., Mandal, M., Manna, P. et al. Superconductivity in breathing kagome-structured C14 Laves phase XOs2(X = Zr, Hf). Superconductor Science and Technology, 2024, 37(7): 075004. DOI:10.1088/1361-6668/ad4a32 5. Liu, J., Zhou, T. Probing the pairing symmetry in kagome superconductors based on the single-particle spectrum. Physical Review B, 2024, 109(5): 054504. DOI:10.1103/PhysRevB.109.054504 6. Wu, X., Chakraborty, D., Schnyder, A.P. et al. Crossover between electron-electron and electron-phonon mediated pairing on the kagome lattice. Physical Review B, 2024, 109(1): 014517. DOI:10.1103/PhysRevB.109.014517 7. Wang, Y., Wu, H., McCandless, G.T. et al. Quantum states and intertwining phases in kagome materials. Nature Reviews Physics, 2023, 5(11): 635-658. DOI:10.1038/s42254-023-00635-7 8. Liu, H., Yao, J., Shi, J. et al. Vanadium-based superconductivity in the breathing kagome compound Ta2 V3.1Si0.9. Physical Review B, 2023, 108(10): 104504. DOI:10.1103/PhysRevB.108.104504 9. Chen, X.-J., Zhang, B.-W., Han, D. et al. Electronic and topological properties of kagome lattice LaV3Si2. Tungsten, 2023, 5(3): 317-324. DOI:10.1007/s42864-022-00200-2 10. Liu, Y., Lyu, M., Liu, J. et al. Structural Determination, Unstable Antiferromagnetism and Transport Properties of Fe-Kagome Y0.5Fe3Sn3 Single Crystals. Chinese Physics Letters, 2023, 40(4): 047102. DOI:10.1088/0256-307X/40/4/047102 11. Wang, Y.. Electronic correlation effects on stabilizing a perfect Kagome lattice and ferromagnetic fluctuation in LaRu3Si2. Journal of University of Science and Technology of China, 2023, 53(7): 0702. DOI:10.52396/JUSTC-2022-0182 12. Rømer, A.T., Bhattacharyya, S., Valentí, R. et al. Superconductivity from repulsive interactions on the kagome lattice. Physical Review B, 2022, 106(17): 174514. DOI:10.1103/PhysRevB.106.174514 Other cited types(0)