Typesetting math: 100%

Superconductivity in Kagome Metal YRu3Si2 with Strong Electron Correlations

  • Received Date: June 01, 2022
  • Published Date: July 31, 2022
  • We report the detailed physical properties of YRu3Si2 with the Ru kagome lattice at normal and superconducting states. The results of resistivity and magnetization show that YRu3Si2 is a type-II bulk superconductor with Tc3.0 K. The specific heat measurement further suggests that this superconductivity could originate from the weak or moderate electron-phonon coupling. On the other hand, both large Kadawaki–Woods ratio and Wilson ratio indicate that there is a strong electron correlation effect in this system, which may have a connection with the featured flat band of kagome lattice.
  • Article Text

  • [1]
    Balents L 2010 Nature 464 199 doi: 10.1038/nature08917

    CrossRef Google Scholar

    [2]
    Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R and Senthil T 2020 Science 367 eaay0668 doi: 10.1126/science.aay0668

    CrossRef Google Scholar

    [3]
    Shores M P, Nytko E A, Bartlett B M and Nocera D G 2005 J. Am. Chem. Soc. 127 13462 doi: 10.1021/ja053891p

    CrossRef Google Scholar

    [4]
    Han T H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Nature 492 406 doi: 10.1038/nature11659

    CrossRef Google Scholar

    [5]
    Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638 doi: 10.1038/nature25987

    CrossRef Google Scholar

    [6]
    Kang M, Ye L, Fang S, You J S, Levitan A, Han M, Facio J I, Jozwiak C, Bostwick A, Rotenberg E, Chan M K, McDonald R D, Graf D, Kaznatcheev K, Vescovo E, Bell D C, Kaxiras E, van den Brink J, Richter M, Ghimire M P, Checkelsky J G and Comin R 2020 Nat. Mater. 19 163 doi: 10.1038/s41563-019-0531-0

    CrossRef Google Scholar

    [7]
    Liu Z H, Li M, Wang Q, Wang G W, Wen C H P, Jiang K, Lu X L, Yan S C, Huang Y B, Shen D W, Yin J X, Wang Z Q, Yin Z P, Lei H C and Wang S C 2020 Nat. Commun. 11 4002 doi: 10.1038/s41467-020-17462-4

    CrossRef Google Scholar

    [8]
    Kang M, Fang S, Ye L, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G and Comin R 2020 Nat. Commun. 11 4004 doi: 10.1038/s41467-020-17465-1

    CrossRef Google Scholar

    [9]
    Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212 doi: 10.1038/nature15723

    CrossRef Google Scholar

    [10]
    Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kübler J, Felser C and Parkin S S P 2016 Sci. Adv. 2 e1501870 doi: 10.1126/sciadv.1501870

    CrossRef Google Scholar

    [11]
    Wang Q, Sun S S, Zhang X, Pang F and Lei H C 2016 Phys. Rev. B 94 075135 doi: 10.1103/PhysRevB.94.075135

    CrossRef Google Scholar

    [12]
    Liu E, Sun Y, Kumar N, Muechler L, Sun A, Jiao L, Yang S Y, Liu D, Liang A, Xu Q, Kroder J, Süß V, Borrmann H, Shekhar C, Wang Z, Xi C, Wang W, Schnelle W, Wirth S, Chen Y, Goennenwein S T B and Felser C 2018 Nat. Phys. 14 1125 doi: 10.1038/s41567-018-0234-5

    CrossRef Google Scholar

    [13]
    Wang Q, Xu Y F, Lou R, Liu Z H, Li M, Huang Y B, Shen D W, Weng H M, Wang S C and Lei H C 2018 Nat. Commun. 9 3681 doi: 10.1038/s41467-018-06088-2

    CrossRef Google Scholar

    [14]
    Yin J X, Zhang S S, Li H, Jiang K, Chang G, Zhang B, Lian B, Xiang C, Belopolski I, Zheng H, Cochran T A, Xu S Y, Bian G, Liu K, Chang T R, Lin H, Lu Z Y, Wang Z, Jia S, Wang W and Hasan M Z 2018 Nature 562 91 doi: 10.1038/s41586-018-0502-7

    CrossRef Google Scholar

    [15]
    Yin J X, Ma W, Cochran T A, Xu X, Zhang S S, Tien H J, Shumiya N, Cheng G, Jiang K, Lian B, Song Z, Chang G, Belopolski I, Multer D, Litskevich M, Cheng Z J, Yang X P, Swidler B, Zhou H, Lin H, Neupert T, Wang Z, Yao N, Chang T R, Jia S and Hasan M Z 2020 Nature 583 533 doi: 10.1038/s41586-020-2482-7

    CrossRef Google Scholar

    [16]
    Ortiz B R, Gomes L C, Morey J R, Winiarski M, Bordelon M, Mangum J S, Oswald I W H, Rodriguez-Rivera J A, Neilson J R, Wilson S D, Ertekin E, McQueen T M and Toberer E S 2019 Phys. Rev. Mater. 3 094407 doi: 10.1103/PhysRevMaterials.3.094407

    CrossRef Google Scholar

    [17]
    Ortiz B R, Teicher S M L, Hu Y, Zuo J L, Sarte P M, Schueller E C, Abeykoon A M M, Krogstad M J, Rosenkranz S, Osborn R, Seshadri R, Balents L, He J F and Wilson S D 2020 Phys. Rev. Lett. 125 247002 doi: 10.1103/PhysRevLett.125.247002

    CrossRef Google Scholar

    [18]
    Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R and Wilson S D 2021 Phys. Rev. Mater. 5 034801 doi: 10.1103/PhysRevMaterials.5.034801

    CrossRef Google Scholar

    [19]
    Yin Q W, Tu Z J, Gong C S, Fu Y, Yan S H and Lei H C 2021 Chin. Phys. Lett. 38 037403 doi: 10.1088/0256-307X/38/3/037403

    CrossRef Google Scholar

    [20]
    Ko W H, Lee P A and Wen X G 2009 Phys. Rev. B 79 214502 doi: 10.1103/PhysRevB.79.214502

    CrossRef Google Scholar

    [21]
    Wang W S, Li Z Z, Xiang Y Y and Wang Q H 2013 Phys. Rev. B 87 115135 doi: 10.1103/PhysRevB.87.115135

    CrossRef Google Scholar

    [22]
    Kiesel M L, Platt C and Thomale R 2013 Phys. Rev. Lett. 110 126405 doi: 10.1103/PhysRevLett.110.126405

    CrossRef Google Scholar

    [23]
    Mazin I I, Jeschke H O, Lechermann F, Lee H, Fink M, Thomale R and Valentí R 2014 Nat. Commun. 5 4261 doi: 10.1038/ncomms5261

    CrossRef Google Scholar

    [24]
    Jiang Y X, Yin J X, Denner M M, Shumiya N, Ortiz B R, He J, Liu X, Zhang S S, Chang G, Belopolski I, Zhang Q, Hossain M S, Cochran T A, Multer D, Litskevich M, Cheng Z J, Yang X P, Guguchia Z, Xu G, Wang Z, Neupert T, Wilson S D and Hasan M Z 2021 Nat. Mater. 20 1353 doi: 10.1038/s41563-021-01034-y

    CrossRef Google Scholar

    [25]
    Chen H, Yang H, Hu B, Zhao Z, Yuan J, Xing Y, Qian G, Huang Z, Li G, Ye Y, Yin Q, Gong C, Tu Z, Lei H, Ma S, Zhang H, Ni S, Tan H, Shen C, Dong X, Yan B, Wang Z and Gao H J 2021 Nature 599 222 doi: 10.1038/s41586-021-03983-5

    CrossRef Google Scholar

    [26]
    Rapp Ö, Invarsson J and Claeson T 1974 Phys. Lett. A 50 159 doi: 10.1016/0375-96017490770-1

    CrossRef Google Scholar

    [27]
    Sun S S, Liu K and Lei H C 2016 J. Phys.: Condens. Matter 28 085701 doi: 10.1088/0953-8984/28/8/085701

    CrossRef Google Scholar

    [28]
    Gong C S, Wang Q, Wang S H and Lei H C 2020 J. Phys.: Condens. Matter 32 295601 doi: 10.1088/1361-648X/ab7c12

    CrossRef Google Scholar

    [29]
    Ku H C, Meisner G P, Acker F and Johnston D C 1980 Solid State Commun. 35 91 doi: 10.1016/0038-10988090221-5

    CrossRef Google Scholar

    [30]
    Barz H 1980 Mater. Res. Bull. 15 1489 doi: 10.1016/0025-54088090107-5

    CrossRef Google Scholar

    [31]
    Escorne M, Mauger A, Gupta L C and Godart C 1994 Phys. Rev. B 49 12051 doi: 10.1103/PhysRevB.49.12051

    CrossRef Google Scholar

    [32]
    Li S, Zeng B, Wan X G, Tao J, Han F, Yang H, Wang Z H and Wen H H 2011 Phys. Rev. B 84 214527 doi: 10.1103/PhysRevB.84.214527

    CrossRef Google Scholar

    [33]
    Li B X, Li S and Wen H H 2016 Phys. Rev. B 94 094523 doi: 10.1103/PhysRevB.94.094523

    CrossRef Google Scholar

    [34]
    Mielke III C, Qin Y, Yin J X, Nakamura H, Das D, Guo K, Khasanov R, Chang J, Wang Z Q, Jia S, Nakatsuji S, Amato A, Luetkens H, Xu G, Hasan M Z and Guguchia Z 2021 Phys. Rev. Mater. 5 034803 doi: 10.1103/PhysRevMaterials.5.034803

    CrossRef Google Scholar

    [35]
    Vandenberg J M and Barz H 1980 Mater. Res. Bull. 15 1493 doi: 10.1016/0025-54088090108-7

    CrossRef Google Scholar

    [36]
    TOPAS Version 4; Bruker AXS, Karlsruhe, Germany 2007.

    Google Scholar

    [37]
    Aharoni A 1998 J. Appl. Phys. 83 3432 doi: 10.1063/1.367113

    CrossRef Google Scholar

    [38]
    Ioffe A F and Regel A R 1961 Prog. Semicond. 4 237

    Google Scholar

    [39]
    Zverev V N, Korobenko A V, Sun G L, Sun D L, Lin C T and Boris A V 2009 JETP Lett. 90 130 doi: 10.1134/S0021364009140100

    CrossRef Google Scholar

    [40]
    Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295 doi: 10.1103/PhysRev.147.295

    CrossRef Google Scholar

    [41]
    Maki K 1966 Phys. Rev. 148 362 doi: 10.1103/PhysRev.148.362

    CrossRef Google Scholar

    [42]
    Yang H D and Lin J Y 2001 J. Phys. Chem. Solids 62 1861 doi: 10.1016/S0022-36970100118-4

    CrossRef Google Scholar

    [43]
    McMillan W L 1968 Phys. Rev. 167 331 doi: 10.1103/PhysRev.167.331

    CrossRef Google Scholar

    [44]
    Kadowaki K and Woods S B 1986 Solid State Commun. 58 507 doi: 10.1016/0038-10988690785-4

    CrossRef Google Scholar

    [45]
    Wilson K G 1975 Rev. Mod. Phys. 47 773 doi: 10.1103/RevModPhys.47.773

    CrossRef Google Scholar

    [46]
    Jacko A C, Fjærestad J O and Powell B J 2009 Nat. Phys. 5 422 doi: 10.1038/nphys1249

    CrossRef Google Scholar

  • Related Articles

    [1]Yuan Yin, Mei Wu, Xiang Ding, Peiyi He, Qize Li, Xiaowen Zhang, Ruixue Zhu, Ruilin Mao, Xiaoyue Gao, Ruochen Shi, Liang Qiao, Peng Gao. Electron microscopy and spectroscopy investigation of atomic, electronic, and phonon structures of NdNiO2/SrTiO3 interface [J]. Chin. Phys. Lett., 2025, 42(4): 047402. doi: 10.1088/0256-307X/42/4/047402
    [2]Shunli Ni, Sheng Ma, Yuhang Zhang, Jie Yuan, Haitao Yang, Zouyouwei Lu, Ningning Wang, Jianping Sun, Zhen Zhao, Dong Li, Shaobo Liu, Hua Zhang, Hui Chen, Kui Jin, Jinguang Cheng, Li Yu, Fang Zhou, Xiaoli Dong, Jiangping Hu, Hong-Jun Gao, Zhongxian Zhao. Anisotropic Superconducting Properties of Kagome Metal CsV3Sb5 [J]. Chin. Phys. Lett., 2021, 38(5): 057403. doi: 10.1088/0256-307X/38/5/057403
    [3]KANG Xiu-Bao, TIAN Tai-He, WANG Zhi-Guo. Optical Nonlinearity of Subwavelength Metal-dielectric Gratings: Effects of Strong Anisotropy [J]. Chin. Phys. Lett., 2011, 28(9): 094206. doi: 10.1088/0256-307X/28/9/094206
    [4]WEI Meng, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, PAN Xu, HOU Qi-Feng, WANG Zhan-Guo. Growth of 2 µm Crack-Free GaN on Si(111) Substrates by Metal Organic Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2011, 28(4): 048102. doi: 10.1088/0256-307X/28/4/048102
    [5]HU Lian, K.Y. Szeto, SUN Xin. Influence of Strong Electron-Electron Interaction on the Peierls Transition [J]. Chin. Phys. Lett., 1997, 14(1): 63-66.
    [6]HU Xiaoming, LIN Zhangda. Observation of the Si(100)-(2 x 2) Phase and Measurements of Low Energy Electron Diffraction I-V Curves [J]. Chin. Phys. Lett., 1995, 12(9): 557-560.
    [7]XU Tiefeng, CHEN Feng, YAN Dadong, LI Wenzhu (Wenzhou Li). Electron-Phonon Vertex Corrections and Superconductivity inAlkali-Metal-Doped C60 Solids [J]. Chin. Phys. Lett., 1994, 11(4): 242-245.
    [8]CHEN Changfeng. COMMENT ON SUPERCONDUCTIVITY CAUSED BY STRONG CORRELATION [J]. Chin. Phys. Lett., 1989, 6(2): 96-96.
    [9]WEI Chongde, LIN Chin, ZHOU Yaqin, WU Ke, Xue Lixin. SUPERCONDUCTIVITY OF LaBa2-xCaxCu3Oy SYSTEM [J]. Chin. Phys. Lett., 1988, 5(7): 301-304.
    [10]FENG Shiping, MA Benkun. SUPERCONDUCTIVITY CAUSED BY STRONG CORRELATION [J]. Chin. Phys. Lett., 1988, 5(5): 229-232.
  • Cited by

    Periodical cited type(12)

    1. Shu, H., Zhong, W., Feng, J. et al. Observation of superconductivity and ferromagnetism in high-entropy carbide ceramics. Acta Materialia, 2025. DOI:10.1016/j.actamat.2024.120693
    2. Ushioda, T., Muranaka, T. Two-gap superconducting states of LaRu3Si2. Physica C: Superconductivity and its Applications, 2024. DOI:10.1016/j.physc.2024.1354583
    3. Zhao, Z., Yao, J., Xu, R. et al. Surface-sensitive electronic structure of kagome superconductor CsV3Sb5. Chinese Physics B, 2024, 33(10): 107403. DOI:10.1088/1674-1056/ad7016
    4. Meena, P.K., Mandal, M., Manna, P. et al. Superconductivity in breathing kagome-structured C14 Laves phase XOs2(X = Zr, Hf). Superconductor Science and Technology, 2024, 37(7): 075004. DOI:10.1088/1361-6668/ad4a32
    5. Liu, J., Zhou, T. Probing the pairing symmetry in kagome superconductors based on the single-particle spectrum. Physical Review B, 2024, 109(5): 054504. DOI:10.1103/PhysRevB.109.054504
    6. Wu, X., Chakraborty, D., Schnyder, A.P. et al. Crossover between electron-electron and electron-phonon mediated pairing on the kagome lattice. Physical Review B, 2024, 109(1): 014517. DOI:10.1103/PhysRevB.109.014517
    7. Wang, Y., Wu, H., McCandless, G.T. et al. Quantum states and intertwining phases in kagome materials. Nature Reviews Physics, 2023, 5(11): 635-658. DOI:10.1038/s42254-023-00635-7
    8. Liu, H., Yao, J., Shi, J. et al. Vanadium-based superconductivity in the breathing kagome compound Ta2 V3.1Si0.9. Physical Review B, 2023, 108(10): 104504. DOI:10.1103/PhysRevB.108.104504
    9. Chen, X.-J., Zhang, B.-W., Han, D. et al. Electronic and topological properties of kagome lattice LaV3Si2. Tungsten, 2023, 5(3): 317-324. DOI:10.1007/s42864-022-00200-2
    10. Liu, Y., Lyu, M., Liu, J. et al. Structural Determination, Unstable Antiferromagnetism and Transport Properties of Fe-Kagome Y0.5Fe3Sn3 Single Crystals. Chinese Physics Letters, 2023, 40(4): 047102. DOI:10.1088/0256-307X/40/4/047102
    11. Wang, Y.. Electronic correlation effects on stabilizing a perfect Kagome lattice and ferromagnetic fluctuation in LaRu3Si2. Journal of University of Science and Technology of China, 2023, 53(7): 0702. DOI:10.52396/JUSTC-2022-0182
    12. Rømer, A.T., Bhattacharyya, S., Valentí, R. et al. Superconductivity from repulsive interactions on the kagome lattice. Physical Review B, 2022, 106(17): 174514. DOI:10.1103/PhysRevB.106.174514

    Other cited types(0)

Catalog

    Article views (201) PDF downloads (330) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return