Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with 7.2 \times 10^-18 Total Uncertainty
-
Abstract
NIM-Sr2 optical lattice clock has been developed on the Changping campus of National Institute of Metrology (NIM). Considering the limitations in NIM-Sr1, several improved parts have been designed including a differential pumping stage in the vacuum system, a permanent magnet Zeeman slower, water-cooled anti-Helmholtz coils, an extended viewport for Zeeman slower, etc. A clock laser with a short-time stability better than 3\times10^-16 is realized based on a self-designed 30-cm-long ultra-low expansion cavity. The systematic frequency shift has been evaluated to an uncertainty of 7.2\times 10^-18, with the uncertainty of BBR shift and the collisional frequency shift being an order of magnitude lower than the last evaluation of NIM-Sr1.
Article Text
-
-
-
About This Article
Cite this article:
Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 080601. DOI: 10.1088/0256-307X/39/8/080601
Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 080601. DOI: 10.1088/0256-307X/39/8/080601
|
Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 080601. DOI: 10.1088/0256-307X/39/8/080601
Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 080601. DOI: 10.1088/0256-307X/39/8/080601
|