Processing math: 100%

Development of Time-of-Flight Polarized Neutron Imaging at the China Spallation Neutron Source

  • Received Date: March 06, 2022
  • Published Date: May 31, 2022
  • A time-of-flight polarized neutron imaging setup was realized by integrating an in situ pumped polarized 3He spin filter and energy dispersive neutron camera on the neutron technique development beamline (BL-20) of the China Spallation Neutron Source (CSNS). Test experiments were performed with a solenoid with aluminum wire as a sample. These demonstrated that polarized radiography with a field of view in diameter 2.0 cm at different wavelengths can be obtained. The wavelength-dependent polarization was used to distinguish the neutron polarization behavior for different positions inside and outside the solenoid. The results of this work show the possibility of applying the technique at CSNS and marks a milestone for future polarized neutron imaging developments.
  • Article Text

  • [1]
    Strobl M, Heimonen H, Schmidt S, Sales M, Kardjilov N, Hilger A, Manke I, Shinohara T, and Valsecchi J 2019 J. Phys. D 52 123001 doi: 10.1088/1361-6463/aafa5e

    CrossRef Google Scholar

    [2]
    Hilger A, Manke I, Kardjilov N, Osenberg M, Markötter H, and Banhart J 2018 Nat. Commun. 9 4023 doi: 10.1038/s41467-018-06593-4

    CrossRef Google Scholar

    [3]
    Kardjilov N, Manke I, Strobl M, Hilger A, Treimer W, Meissner M, Krist T, and Banhart J 2008 Nat. Phys. 4 399 doi: 10.1038/nphys912

    CrossRef Google Scholar

    [4]
    Wang T, Jiang C, Bilheux H et al.. 2019 Rev. Sci. Instrum. 90 033705 doi: 10.1063/1.5053690

    CrossRef Google Scholar

    [5]
    Ţuţueanu A E, Sales M, Eliasen K et al.. 2020 Physica C 575 1353691 doi: 10.1016/j.physc.2020.1353691

    CrossRef Google Scholar

    [6]
    Manke I, Kardjilov N, Strobl M, Hilger A, and Banhart J 2008 J. Appl. Phys. 104 076109 doi: 10.1063/1.2992516

    CrossRef Google Scholar

    [7]
    Kardjilov N, Hilger A, Manke I, Strobl M, and Banhart J 2018 J. Imaging 4 23 doi: 10.3390/jimaging4010023

    CrossRef Google Scholar

    [8]
    Hiroi K, Shinohara T, Hayashida H, Parker J D, Oikawa K, Harada M, Su Y, and Kai T 2017 J. Phys.: Conf. Ser. 862 012008 doi: 10.1088/1742-6596/862/1/012008

    CrossRef Google Scholar

    [9]
    Hiroi K, Shinohara T, Hayashida H, Parker J, Su Y, Oikawa K, Kai T, and Kiyanagi Y 2018 Physica B 551 146 doi: 10.1016/j.physb.2018.05.013

    CrossRef Google Scholar

    [10]
    Gentile T R, Nacher P, Saam B, and Walker T 2017 Rev. Mod. Phys. 89 045004 doi: 10.1103/RevModPhys.89.045004

    CrossRef Google Scholar

    [11]
    Gainov R, Mezei F, Füzi J, and Russina M 2019 Nucl. Instrum. Methods Phys. Res. Sect. A 930 42 doi: 10.1016/j.nima.2019.03.046

    CrossRef Google Scholar

    [12]
    Shinohara T, Kai T, Oikawa K et al.. 2020 Rev. Sci. Instrum. 91 043302 doi: 10.1063/1.5136034

    CrossRef Google Scholar

    [13]
    Strobl M, Kardjilov N, Hilger A, Penumadu D, and Manke I 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 651 57 doi: 10.1016/j.nima.2011.02.029

    CrossRef Google Scholar

    [14]
    Sales M, Strobl M, Shinohara T, Tremsin A, Kuhn L T, Lionheart W R, Desai N M, Dahl A B, and Schmidt S 2018 Sci. Rep. 8 2214 doi: 10.1038/s41598-018-20461-7

    CrossRef Google Scholar

    [15]
    Sales M, Shinohara T, Sørensen M K, Knudsen E B, Tremsin A, Strobl M, and Schmidt S 2019 J. Phys. D 52 205001 doi: 10.1088/1361-6463/ab0aba

    CrossRef Google Scholar

    [16]
    Dawson M, Manke I, Kardjilov N, Hilger A, Strobl M, and Banhart J 2009 New J. Phys. 11 043013 doi: 10.1088/1367-2630/11/4/043013

    CrossRef Google Scholar

    [17]
    Kardjilov N, Hilger A, Manke I, Woracek R, and Banhart J 2016 J. Appl. Crystallogr. 49 195 doi: 10.1107/S1600576715023353

    CrossRef Google Scholar

    [18]
    Yang J, Zhou J, Jiang X et al.. 2021 Nucl. Instrum. Methods Phys. Res. Sect. A 1000 165222 doi: 10.1016/j.nima.2021.165222

    CrossRef Google Scholar

    [19]
    Zhang J, Huang C, Qin Z et al.. 2022 Sci. Chin. Phys. Mech. & Astron. 65 241011 doi: 10.1007/s11433-021-1876-0

    CrossRef Google Scholar

    [20]
    Qin Z, Huang C, Buck Z N, Kreuzpaintner W, Amir S M, Salman A, Ye F, Zhang J, Jiang C, Wang T, and Tong X 2021 Chin. Phys. Lett. 38 052801 doi: 10.1088/0256-307X/38/5/052801

    CrossRef Google Scholar

    [21]
    Huang C, Zhang J, Ye F, Qin Z, Amir S M, Buck Z N, Salman A, Kreuzpaintner W, Qi X, Wang T, and Tong X 2021 Chin. Phys. Lett. 38 092801 doi: 10.1088/0256-307X/38/9/092801

    CrossRef Google Scholar

    [22]
    Babcock E, Petoukhov A, Chastagnier J et al.. 2007 Physica B 397 172 doi: 10.1016/j.physb.2007.02.093

    CrossRef Google Scholar

    [23]
    Ino T, Arimoto Y, Shimizu H M et al.. 2012 J. Phys.: Conf. Ser. 340 012006 doi: 10.1088/1742-6596/340/1/012006

    CrossRef Google Scholar

    [24]
    https://cn.comsol.com/products 2022 COMSOL Multiphysics®

    Google Scholar

  • Related Articles

    [1]Mahamat Saleh, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. Quasi-Normal Modes of Gravitational Perturbation around a Reissner-Nordström Black Hole Surrounded by Quintessence [J]. Chin. Phys. Lett., 2009, 26(10): 109802. doi: 10.1088/0256-307X/26/10/109802
    [2]WEI Yi-Huan. Quasi-Local Energy Distribution of the Modified Reissner--Nordström Black Hole [J]. Chin. Phys. Lett., 2008, 25(8): 2782-2784.
    [3]ZUO Xue-Qin, WANG Ding-Xiong, MA Ren-Yi. A New Approach to Black hole Spin in X-Ray Binaries [J]. Chin. Phys. Lett., 2005, 22(10): 2727-2730.
    [4]YAO Guo-Zheng, WANG Ding-Xiong. Connection Between Screw-Instability in Black Hole Magnetosphere and Pairs of High-Frequency Quasi-Periodic Oscillations [J]. Chin. Phys. Lett., 2004, 21(7): 1405-1408.
    [5]WU Shuang-Qing, YAN Mu-Lin. Hawking Radiation of an Arbitrarily Accelerating Kinnersley Black Hole: Spin-Acceleration Coupling Effect [J]. Chin. Phys. Lett., 2003, 20(11): 1913-1916.
    [6]WANG Ding-Xiong, MA Ren-Yi, LEI Wei-Hua, YE Yong-Chun, GONG Xiao-Long. Cycle of Black Hole Spin due to Disc Accretion Alternating with Magnetic Transfer [J]. Chin. Phys. Lett., 2003, 20(10): 1895-1898.
    [7]LI Xin-Zhou, ZHOU Bing-Lu, ZHU Jiong-Ming. Quasi-Normal Oscillations of a Black Hole with Deficit Angle for Electromagnetic Perturbations [J]. Chin. Phys. Lett., 2001, 18(4): 482-484.
    [8]LI Zhong-Heng. Quantum Corrections to the Entropy of a Barriola-Vilenkin Black Hole due to Spin Fields [J]. Chin. Phys. Lett., 2000, 17(6): 396-397.
    [9]LI Zhong-heng. Vaidya-de Sitter Black Hole with Spin Fields [J]. Chin. Phys. Lett., 1998, 15(8): 553-554.
    [10]ZHAO Zheng. Black Holes with Intrinsic Spin [J]. Chin. Phys. Lett., 1992, 9(3): 162-164.

Catalog

    Article views (275) PDF downloads (337) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return