Development of Time-of-Flight Polarized Neutron Imaging at the China Spallation Neutron Source
-
Abstract
A time-of-flight polarized neutron imaging setup was realized by integrating an in situ pumped polarized 3He spin filter and energy dispersive neutron camera on the neutron technique development beamline (BL-20) of the China Spallation Neutron Source (CSNS). Test experiments were performed with a solenoid with aluminum wire as a sample. These demonstrated that polarized radiography with a field of view in diameter 2.0 cm at different wavelengths can be obtained. The wavelength-dependent polarization was used to distinguish the neutron polarization behavior for different positions inside and outside the solenoid. The results of this work show the possibility of applying the technique at CSNS and marks a milestone for future polarized neutron imaging developments. -
-
References
[1] Strobl M, Heimonen H, Schmidt S, Sales M, Kardjilov N, Hilger A, Manke I, Shinohara T, and Valsecchi J 2019 J. Phys. D 52 123001 doi: 10.1088/1361-6463/aafa5e[2] Hilger A, Manke I, Kardjilov N, Osenberg M, Markötter H, and Banhart J 2018 Nat. Commun. 9 4023 doi: 10.1038/s41467-018-06593-4[3] Kardjilov N, Manke I, Strobl M, Hilger A, Treimer W, Meissner M, Krist T, and Banhart J 2008 Nat. Phys. 4 399 doi: 10.1038/nphys912[4] Wang T, Jiang C, Bilheux H et al.. 2019 Rev. Sci. Instrum. 90 033705 doi: 10.1063/1.5053690[5] Ţuţueanu A E, Sales M, Eliasen K et al.. 2020 Physica C 575 1353691 doi: 10.1016/j.physc.2020.1353691[6] Manke I, Kardjilov N, Strobl M, Hilger A, and Banhart J 2008 J. Appl. Phys. 104 076109 doi: 10.1063/1.2992516[7] Kardjilov N, Hilger A, Manke I, Strobl M, and Banhart J 2018 J. Imaging 4 23 doi: 10.3390/jimaging4010023[8] Hiroi K, Shinohara T, Hayashida H, Parker J D, Oikawa K, Harada M, Su Y, and Kai T 2017 J. Phys.: Conf. Ser. 862 012008 doi: 10.1088/1742-6596/862/1/012008[9] Hiroi K, Shinohara T, Hayashida H, Parker J, Su Y, Oikawa K, Kai T, and Kiyanagi Y 2018 Physica B 551 146 doi: 10.1016/j.physb.2018.05.013[10] Gentile T R, Nacher P, Saam B, and Walker T 2017 Rev. Mod. Phys. 89 045004 doi: 10.1103/RevModPhys.89.045004[11] Gainov R, Mezei F, Füzi J, and Russina M 2019 Nucl. Instrum. Methods Phys. Res. Sect. A 930 42 doi: 10.1016/j.nima.2019.03.046[12] Shinohara T, Kai T, Oikawa K et al.. 2020 Rev. Sci. Instrum. 91 043302 doi: 10.1063/1.5136034[13] Strobl M, Kardjilov N, Hilger A, Penumadu D, and Manke I 2011 Nucl. Instrum. Methods Phys. Res. Sect. A 651 57 doi: 10.1016/j.nima.2011.02.029[14] Sales M, Strobl M, Shinohara T, Tremsin A, Kuhn L T, Lionheart W R, Desai N M, Dahl A B, and Schmidt S 2018 Sci. Rep. 8 2214 doi: 10.1038/s41598-018-20461-7[15] Sales M, Shinohara T, Sørensen M K, Knudsen E B, Tremsin A, Strobl M, and Schmidt S 2019 J. Phys. D 52 205001 doi: 10.1088/1361-6463/ab0aba[16] Dawson M, Manke I, Kardjilov N, Hilger A, Strobl M, and Banhart J 2009 New J. Phys. 11 043013 doi: 10.1088/1367-2630/11/4/043013[17] Kardjilov N, Hilger A, Manke I, Woracek R, and Banhart J 2016 J. Appl. Crystallogr. 49 195 doi: 10.1107/S1600576715023353[18] Yang J, Zhou J, Jiang X et al.. 2021 Nucl. Instrum. Methods Phys. Res. Sect. A 1000 165222 doi: 10.1016/j.nima.2021.165222[19] Zhang J, Huang C, Qin Z et al.. 2022 Sci. Chin. Phys. Mech. & Astron. 65 241011 doi: 10.1007/s11433-021-1876-0[20] Qin Z, Huang C, Buck Z N, Kreuzpaintner W, Amir S M, Salman A, Ye F, Zhang J, Jiang C, Wang T, and Tong X 2021 Chin. Phys. Lett. 38 052801 doi: 10.1088/0256-307X/38/5/052801[21] Huang C, Zhang J, Ye F, Qin Z, Amir S M, Buck Z N, Salman A, Kreuzpaintner W, Qi X, Wang T, and Tong X 2021 Chin. Phys. Lett. 38 092801 doi: 10.1088/0256-307X/38/9/092801[22] Babcock E, Petoukhov A, Chastagnier J et al.. 2007 Physica B 397 172 doi: 10.1016/j.physb.2007.02.093[23] Ino T, Arimoto Y, Shimizu H M et al.. 2012 J. Phys.: Conf. Ser. 340 012006 doi: 10.1088/1742-6596/340/1/012006[24] https://cn.comsol.com/products 2022 COMSOL Multiphysics® -
Related Articles
[1] Mahamat Saleh, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. Quasi-Normal Modes of Gravitational Perturbation around a Reissner-Nordström Black Hole Surrounded by Quintessence [J]. Chin. Phys. Lett., 2009, 26(10): 109802. doi: 10.1088/0256-307X/26/10/109802 [2] WEI Yi-Huan. Quasi-Local Energy Distribution of the Modified Reissner--Nordström Black Hole [J]. Chin. Phys. Lett., 2008, 25(8): 2782-2784. [3] ZUO Xue-Qin, WANG Ding-Xiong, MA Ren-Yi. A New Approach to Black hole Spin in X-Ray Binaries [J]. Chin. Phys. Lett., 2005, 22(10): 2727-2730. [4] YAO Guo-Zheng, WANG Ding-Xiong. Connection Between Screw-Instability in Black Hole Magnetosphere and Pairs of High-Frequency Quasi-Periodic Oscillations [J]. Chin. Phys. Lett., 2004, 21(7): 1405-1408. [5] WU Shuang-Qing, YAN Mu-Lin. Hawking Radiation of an Arbitrarily Accelerating Kinnersley Black Hole: Spin-Acceleration Coupling Effect [J]. Chin. Phys. Lett., 2003, 20(11): 1913-1916. [6] WANG Ding-Xiong, MA Ren-Yi, LEI Wei-Hua, YE Yong-Chun, GONG Xiao-Long. Cycle of Black Hole Spin due to Disc Accretion Alternating with Magnetic Transfer [J]. Chin. Phys. Lett., 2003, 20(10): 1895-1898. [7] LI Xin-Zhou, ZHOU Bing-Lu, ZHU Jiong-Ming. Quasi-Normal Oscillations of a Black Hole with Deficit Angle for Electromagnetic Perturbations [J]. Chin. Phys. Lett., 2001, 18(4): 482-484. [8] LI Zhong-Heng. Quantum Corrections to the Entropy of a Barriola-Vilenkin Black Hole due to Spin Fields [J]. Chin. Phys. Lett., 2000, 17(6): 396-397. [9] LI Zhong-heng. Vaidya-de Sitter Black Hole with Spin Fields [J]. Chin. Phys. Lett., 1998, 15(8): 553-554. [10] ZHAO Zheng. Black Holes with Intrinsic Spin [J]. Chin. Phys. Lett., 1992, 9(3): 162-164.