Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation
-
Abstract
We investigate interplay of topological and Kondo effects in a one-dimensional Kondo–Heisenberg model with nontrivial conduction band using the density matrix renormalization group method. By analyzing the density profile, the local hybridization, and the spin/charge gap, we find that the Kondo effect can be destructed at edges of the chain by the topological end state below a finite critical Kondo coupling J_\scriptscriptstyle\rm K^\rm c. We construct a phase diagram characterizing the transition of the end states.
Article Text
-
-
-
About This Article
Cite this article:
Neng Xie, Danqing Hu, Shu Chen, Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 117101. DOI: 10.1088/0256-307X/39/11/117101
Neng Xie, Danqing Hu, Shu Chen, Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 117101. DOI: 10.1088/0256-307X/39/11/117101
|
Neng Xie, Danqing Hu, Shu Chen, Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 117101. DOI: 10.1088/0256-307X/39/11/117101
Neng Xie, Danqing Hu, Shu Chen, Yi-feng Yang. Evolution of Topological End States in the One-Dimensional Kondo–Heisenberg Model with Site Modulation[J]. Chin. Phys. Lett., 2022, 39(11): 117101. DOI: 10.1088/0256-307X/39/11/117101
|