Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation
-
Abstract
The fractional second- and third-order nonlinear Schrödinger equation is studied, symmetric and antisymmetric soliton solutions are derived, and the influence of the Lévy index on different solitons is analyzed. The stability and stability interval of solitons are discussed. The anti-interference ability of stable solitons to the small disturbance shows a good robustness.
Article Text
-
-
-
About This Article
Cite this article:
Qi-Hao Cao , Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 090501. DOI: 10.1088/0256-307X/38/9/090501
Qi-Hao Cao , Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 090501. DOI: 10.1088/0256-307X/38/9/090501
|
Qi-Hao Cao , Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 090501. DOI: 10.1088/0256-307X/38/9/090501
Qi-Hao Cao , Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 090501. DOI: 10.1088/0256-307X/38/9/090501
|