Core-Excited Molecules by Resonant Intense X-Ray Pulses Involving Electron-Rotation Coupling

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 11934004, 11974230, and 11904192), and the Education of Russian Federation (Grant No. FSRZ-2020-0008).
  • Received Date: January 25, 2021
  • Published Date: April 30, 2021
  • It has been reported that electron-rotation coupling plays a significant role in diatomic nuclear dynamics induced by intense VUV pulses [Phys. Rev. A 102 (2020) 033114; Phys. Rev. Res. 2 (2020) 043348]. As a further step, we present here investigations of the electron-rotation coupling effect in the presence of Auger decay channel for core-excited molecules, based on theoretical modeling of the total electron yield (TEY), resonant Auger scattering (RAS) and x-ray absorption spectra (XAS) for two showcases of CO and CH+ molecules excited by resonant intense x-ray pulses. The Wigner D-functions and the universal transition dipole operators are introduced to include the electron-rotation coupling for the core-excitation process. It is shown that with the pulse intensity up to 1016W/cm2, no sufficient influence of the electron-rotation coupling on the TEY and RAS spectra can be observed. This can be explained by a suppression of the induced electron-rotation dynamics due to the fast Auger decay channel, which does not allow for effective Rabi cycling even at extreme field intensities, contrary to transitions in optical or VUV range. For the case of XAS, however, relative errors of about 10% and 30% are observed for the case of CO and CH+, respectively, when the electron-rotation coupling is neglected. It is concluded that conventional treatment of the photoexcitation, neglecting the electron-rotation coupling, can be safely and efficiently employed to study dynamics at the x-ray transitions by means of electron emission spectroscopy, yet the approximation breaks down for nonlinear processes as stimulated emission, especially for systems with light atoms.
  • Article Text

  • [1]
    Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F J, Ding Y, Dowell D, Edstrom S, Fisher A, Frisch J, Gilevich S, Hastings J, Hays G, Hering P, Huang Z, Iverson R, Loos H, Messerschmidt M, Miahnahri A, Moeller S, Nuhn H D, Pile G, Ratner D, Rzepiela J, Schultz D, Smith T, Stefan P, Tompkins H, Turner J, Welch J, White W, Wu J, Yocky G, and Galayda J 2010 Nat. Photon. 4 641 doi: 10.1038/nphoton.2010.176

    CrossRef Google Scholar

    [2]
    Ullrich J, Rudenko A, and Moshammer R 2012 Annu. Rev. Phys. Chem. 63 635 doi: 10.1146/annurev-physchem-032511-143720

    CrossRef Google Scholar

    [3]
    Harmand M, Coffee R, Bionta M R, Chollet M, French D, Zhu D, Fritz D M, Lemke H T, Medvedev N, Ziaja B, Toleikis S, and Cammarata M 2013 Nat. Photon. 7 215 doi: 10.1038/nphoton.2013.11

    CrossRef Google Scholar

    [4]
    Bostedt C, Boutet S, Fritz D M, Huang Z, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, and Williams G J 2016 Rev. Mod. Phys. 88 015007 doi: 10.1103/RevModPhys.88.015007

    CrossRef Google Scholar

    [5]
    Pellegrini C, Marinelli A, and Reiche S 2016 Rev. Mod. Phys. 88 015006 doi: 10.1103/RevModPhys.88.015006

    CrossRef Google Scholar

    [6]
    Shi X, Wu Y, Wang J G, Kimberg V, and Zhang S B 2020 Phys. Rev. A 101 023401 doi: 10.1103/PhysRevA.101.023401

    CrossRef Google Scholar

    [7]
    Rohringer N and Santra R 2012 Phys. Rev. A 86 043434 doi: 10.1103/PhysRevA.86.043434

    CrossRef Google Scholar

    [8]
    Bian Q, Wu Y, Wang J G, and Zhang S B 2019 Phys. Rev. A 99 033404 doi: 10.1103/PhysRevA.99.033404

    CrossRef Google Scholar

    [9]
    Berrah N, Bozek J, Costello J, Düsterer S, Fang L, Feldhaus J, Fukuzawa H, Hoener M, Jiang Y, Johnsson P, Kennedy E, Meyer M, Moshammer R, Radcliffe P, Richter M, Rouzée A, Rudenko A, Sorokin A, Tiedtke K, Ueda K, Ullrich J, and Vrakking M 2010 J. Mod. Opt. 57 1015 doi: 10.1080/09500340.2010.487946

    CrossRef Google Scholar

    [10]
    Seddon E A et al.. 2017 Rep. Prog. Phys. 80 115901 doi: 10.1088/1361-6633/aa7cca

    CrossRef Google Scholar

    [11]
    Xiao F, Fan X, Wang L, Zhang D, Wu J, Wang X, and Zhao Z 2020 Chin. Phys. Lett. 37 114202 doi: 10.1088/0256-307X/37/11/114202

    CrossRef Google Scholar

    [12]
    Wang X, Wang L, Xiao F, Zhang D, Lü Z, Yuan J, and Zhao Z 2020 Chin. Phys. Lett. 37 023201 doi: 10.1088/0256-307X/37/2/023201

    CrossRef Google Scholar

    [13]
    Rohringer N and Santra R 2008 Phys. Rev. A 77 053404 doi: 10.1103/PhysRevA.77.053404

    CrossRef Google Scholar

    [14]
    Liu J C, Sun Y P, Wang C K, Ågren H, and Gel'mukhanov F 2010 Phys. Rev. A 81 043412 doi: 10.1103/PhysRevA.81.043412

    CrossRef Google Scholar

    [15]
    Cederbaum L S, Chiang Y C, Demekhin P V, and Moiseyev N 2011 Phys. Rev. Lett. 106 123001 doi: 10.1103/PhysRevLett.106.123001

    CrossRef Google Scholar

    [16]
    Ledingham K W D, McKenna P, and Singhal R P 2003 Science 300 1107 doi: 10.1126/science.1080552

    CrossRef Google Scholar

    [17]
    Došlić N 2006 Phys. Rev. A 74 013402 doi: 10.1103/PhysRevA.74.013402

    CrossRef Google Scholar

    [18]
    Baykusheva D, Kraus P M, Zhang S B, Rohringer N, and Wörner H J 2014 Faraday Discuss. 171 113 doi: 10.1039/C4FD00018H

    CrossRef Google Scholar

    [19]
    Demekhin P V, Chiang Y C, and Cederbaum L S 2011 Phys. Rev. A 84 033417 doi: 10.1103/PhysRevA.84.033417

    CrossRef Google Scholar

    [20]
    Zhang S B and Rohringer N 2014 Phys. Rev. A 89 013407 doi: 10.1103/PhysRevA.89.013407

    CrossRef Google Scholar

    [21]
    Feng H, Zhang Y Z, and Jiang Y H 2016 Laser & Optoelectron. Prog. 53 010002 doi: 10.3788/LOP53.010002

    CrossRef Google Scholar

    [22]
    Yuan J, Ma Y, Li R, Ma H, Zhang Y, Ye D, Shen Z, Yan T, Wang X, Weidemüller M, and Jiang Y 2020 Chin. Phys. Lett. 37 053201 doi: 10.1088/0256-307X/37/5/053201

    CrossRef Google Scholar

    [23]
    Ott C, Aufleger L, Ding T, Rebholz M, Magunia A, Hartmann M, Stooß V, Wachs D, Birk P, Borisova G D, Meyer K, Rupprecht P, da C C C, Moshammer R, Attar A R, Gaumnitz T, Loh Z H, Düsterer S, Treusch R, Ullrich J, Jiang Y, Meyer M, Lambropoulos P, and Pfeifer T 2019 Phys. Rev. Lett. 123 163201 doi: 10.1103/PhysRevLett.123.163201

    CrossRef Google Scholar

    [24]
    Huang Y, Qin C C, Zhang Y Z, Wang X C, Yan T M, and Jiang Y H 2019 Chin. Phys. B 28 093202 doi: 10.1088/1674-1056/ab3444

    CrossRef Google Scholar

    [25]
    Li F, Yang Y J, Chen J, Liu X J, Wei Z Y, and Wang B B 2020 Chin. Phys. Lett. 37 113201 doi: 10.1088/0256-307X/37/11/113201

    CrossRef Google Scholar

    [26]
    Sun T, Zhang S W, Wang R, Feng S, Liu Y, Lv H, and Xu H F 2020 Chin. Phys. Lett. 37 043301 doi: 10.1088/0256-307X/37/4/043301

    CrossRef Google Scholar

    [27]
    Liu Y R, Wu Y, Wang J G, Vendrell O, Kimberg V, and Zhang S B 2020 Phys. Rev. A 102 033114 doi: 10.1103/PhysRevA.102.033114

    CrossRef Google Scholar

    [28]
    Liu Y R, Wu Y, Wang J G, Vendrell O, Kimberg V, and Zhang S B 2020 Phys. Rev. Res. 2 043348 doi: 10.1103/PhysRevResearch.2.043348

    CrossRef Google Scholar

    [29]
    Mosnier J P, Kennedy E T, van Kampen P, Cubaynes D, Guilbaud S, Sisourat N, Puglisi A, Carniato S, and Bizau J M 2016 Phys. Rev. A 93 061401 doi: 10.1103/PhysRevA.93.061401

    CrossRef Google Scholar

    [30]
    Kennedy E T, Mosnier J P, van Kampen P, Bizau J M, Cubaynes D, Guilbaud S, Carniato S, Puglisi A, and Sisourat N 2018 Phys. Rev. A 97 043410 doi: 10.1103/PhysRevA.97.043410

    CrossRef Google Scholar

    [31]
    Sun Z, Wang C, Zhao W, and Yang C 2018 J. Chem. Phys. 149 224307 doi: 10.1063/1.5052514

    CrossRef Google Scholar

    [32]
    Badankó P, Halász G J, Cederbaum L S, Á V, and Csehi A 2018 J. Chem. Phys. 149 181101 doi: 10.1063/1.5054775

    CrossRef Google Scholar

    [33]
    Tóth A, Badankó P, Halász G J, Vibók Á, and Csehi A 2018 Chem. Phys. 515 418 doi: 10.1016/j.chemphys.2018.05.002

    CrossRef Google Scholar

    [34]
    Tóth A, Csehi A, Halász G J, and Vibók A 2020 Phys. Rev. Res. 2 013338 doi: 10.1103/PhysRevResearch.2.013338

    CrossRef Google Scholar

    [35]
    Shelkovnikov A, Butcher R J, Chardonnet C, and Amy-Klein A 2008 Phys. Rev. Lett. 100 150801 doi: 10.1103/PhysRevLett.100.150801

    CrossRef Google Scholar

    [36]
    Rosen G 1971 Phys. Rev. D 4 275 doi: 10.1103/PhysRevD.4.275

    CrossRef Google Scholar

    [37]
    Cohen E R 1952 Phys. Rev. 88 353 doi: 10.1103/PhysRev.88.353

    CrossRef Google Scholar

    [38]
    Zhang S B, Kimberg V, and Rohringer N 2016 Phys. Rev. A 94 063413 doi: 10.1103/PhysRevA.94.063413

    CrossRef Google Scholar

    [39]
    Piancastelli M N, Neeb M, Kivimäki A, Kempgens B, Köppe H M, Maier K, Bradshaw A M, and Fink R F 1997 J. Phys. B 30 5677 doi: 10.1088/0953-4075/30/24/008

    CrossRef Google Scholar

    [40]
    Beck M, Jackle A, Worth G, and Meyer H D 2000 Phys. Rep. 324 1 doi: 10.1016/S0370-15739900047-2

    CrossRef Google Scholar

    [41]
    Agarwal G S 1971 Phys. Rev. A 4 1778 doi: 10.1103/PhysRevA.4.1778

    CrossRef Google Scholar

    [42]
    Zaheer K and Zubairy M S 1988 Phys. Rev. A 37 1628 doi: 10.1103/PhysRevA.37.1628

    CrossRef Google Scholar

    [43]
    Brown A, Meath W J, and Tran P 2000 Phys. Rev. A 63 013403 doi: 10.1103/PhysRevA.63.013403

    CrossRef Google Scholar

    [44]
    Cederbaum L S and Domcke W 1981 J. Phys. B 14 4665 doi: 10.1088/0022-3700/14/23/025

    CrossRef Google Scholar

    [45]
    Domcke W 1991 Phys. Rep. 208 97 doi: 10.1016/0370-15739190125-6

    CrossRef Google Scholar

    [46]
    Pahl E, Meyer H D, and Cederbaum L S 1996 Z. Phys. D 38 215 doi: 10.1007/s004600050086

    CrossRef Google Scholar

    [47]
    Demekhin P V and Cederbaum L S 2011 Phys. Rev. A 83 023422 doi: 10.1103/PhysRevA.83.023422

    CrossRef Google Scholar

    [48]
    Demekhin P V and Cederbaum L S 2013 J. Phys. B 46 164008 doi: 10.1088/0953-4075/46/16/164008

    CrossRef Google Scholar

    [49]
    Skytt P, Glans P, Gunnelin K, Guo J H, Nordgren J, Luo Y, and Ågren H 1997 Phys. Rev. A 55 134 doi: 10.1103/PhysRevA.55.134

    CrossRef Google Scholar

    [50]
    Biglari Z, Shayesteh A, and Maghari A 2014 Comput. Theor. Chem. 1047 22 doi: 10.1016/j.comptc.2014.08.012

    CrossRef Google Scholar

    [51]
    Butler S E, Guberman S L, and Dalgarno A 1977 Phys. Rev. A 16 500 doi: 10.1103/PhysRevA.16.500

    CrossRef Google Scholar

    [52]
    Worth G A, Beck M H, Jäckle A, Vendrell O and Meyer H D, The MCTDH Package , Version 8.2, 2000; Meyer H D, Version 8.3 2002, Version 8.4 2007; Vendrell O and Meyer H D; Version 8.5 2013; Version 8.5 contains the ML-MCTDH algorithm. Current versions: 8.4.18 and 8.5.11 2019. Used version: exchange with “Used version” See http://mctdh.uni-hd.de/

    Google Scholar

  • Related Articles

    [1]WANG Xiang-Li, DONG Chen-Zhong, SU Mao-Gen, KOIKE Fumihiro. Fluorescence and Auger Decay Properties of the Core-Excited F-Like Ions from Ne to Kr [J]. Chin. Phys. Lett., 2012, 29(4): 043201. doi: 10.1088/0256-307X/29/4/043201
    [2]LI Hui-Liang, WANG Xiao-Jun, YUAN Jun-Lin, ZHAO Jing-Tai, YANG Xin-Xin, ZHANG Zhi-Jun, CHEN Hao-Hong, ZHANG Guo-Bin, SHI Chao-Shu. VUV/UV/X-Ray Excited Luminescent Properties of Eu3+ nd Pr3+ Doped BiSbO4 [J]. Chin. Phys. Lett., 2008, 25(10): 3790-3793.
    [3]CHEN Ji-Gen, LI Chen, CHI Fang-Ping, YANG Yu-Jun. Single X-Ray Attosecond Pulse Generation by Using Combined Pulses Irradiating on a United Two-Atom System [J]. Chin. Phys. Lett., 2007, 24(1): 86-89.
    [4]LIN Gui-Fang, ZHANG Li. X-Ray Emission from Rotation-Powered Pulsars [J]. Chin. Phys. Lett., 2005, 22(4): 1022-1024.
    [5]WANG Qi, CHENG Yuan-Li, ZHAO Yong-Peng, XIA Yuan-Qin, CHEN Jian-Xin, XIAO Yi-Fan. X-Ray and Extreme Ultraviolet Emission from Small-Sized Kr Clusters Irradiated by 150-fs Laser Pulses [J]. Chin. Phys. Lett., 2003, 20(8): 1309-1311.
    [6]LIU Timon Cheng-Yi, GUO Hong, FU Xi-Quan, HU Wei, YU Song. Maxwell-Schrödinger Equation for X-Ray Laser Propagation andInterferometry Measurement of Plasma Electron Density [J]. Chin. Phys. Lett., 2001, 18(11): 1490-1492.
    [7]SHI Yue-Jiang, WAN Bao-Nian. Energy Resolution Effects on Plasma Electron Temperature Measurements by Soft X-Ray Pulse-Height-Analysis [J]. Chin. Phys. Lett., 2001, 18(4): 562-563.
    [8]WANG Ying-Song, XU Zhi-Zhan. Subfemtosecond X-ray Pulses Produced Directly by High Harmonic Generation [J]. Chin. Phys. Lett., 2000, 17(7): 491-492.
    [9]GU Yu-qiu, LI Ying-jun, LI Yu-tong, CHUNYU Shu-tai, YOU Yong-lu, HUANG Wen-zhong, HE Shao-tang, HE Ying-ling, LU Li-zhu, YUAN Xiao-dong, WEI Xiao-feng, ZHANG Chuan-fei, ZHANG Jie. Nickel-Like Molybdenum and Niobium Soft X-Ray Lasing Driven by 200 ps Laser Pulses with 50 J of Energy [J]. Chin. Phys. Lett., 1999, 16(9): 653-655.
    [10]HOU Meiying, FENG Baohua, ZHANG Jian, SHE Yongbo, MI Zhonglu, CHEN Tianjie. EXPERIMENTAL DETERMINATION OFTHE SPIN-ROTATION COUPLING IN NaXe MOLECULES [J]. Chin. Phys. Lett., 1986, 3(9): 397-400.
  • Cited by

    Periodical cited type(11)

    1. Liu, Y.R., Kimberg, V., Gong, M. et al. Spin-orbit splitting on photodissociation in open-shell diatomics by intense UV pulses. Physical Review A, 2025, 111(1): 013122. DOI:10.1103/PhysRevA.111.013122
    2. Xia Dong, X., Gong, M., Zhao, X. et al. Unraveling photodissociation dynamics by sub-femtosecond ultraviolet pulses: insights into fragmental kinetics and carrier-envelope phase characterization. New Journal of Physics, 2024, 26(1): 013050. DOI:10.1088/1367-2630/ad1e92
    3. Nan, Q.-W., Wang, C., Yu, X.-Y. et al. Resonant Auger Scattering by Attosecond X-Ray Pulses. Chinese Physics Letters, 2023, 40(9): 093201. DOI:10.1088/0256-307X/40/9/093201
    4. Wang, C., Gong, M., Cheng, Y. et al. Time-Resolved Resonant Auger Scattering Clocks Distortion of a Molecule. Journal of Physical Chemistry Letters, 2023, 14(24): 5475-5480. DOI:10.1021/acs.jpclett.3c01347
    5. Fu, T., Guo, F., Wang, J. et al. Waveform Modulation of High-Order Harmonics Generated from an Atom Irradiated by a Laser Pulse and a Weak Orthogonal Electrostatic Field. Symmetry, 2023, 15(4): 901. DOI:10.3390/sym15040901
    6. Cao, D.-D., Pan, X.-F., Zhang, J. et al. Spectral shift of solid high-order harmonics from different channels in a combined laser field. Chinese Physics B, 2023, 32(3): 034204. DOI:10.1088/1674-1056/aca4bf
    7. Dong, X.X., Liu, Y.R., Kimberg, V. et al. Carrier-envelope-phase measurement of sub-cycle UV pulses using angular photofragment distributions. Communications Physics, 2022, 5(1): 181. DOI:10.1038/s42005-022-00959-3
    8. Liu, Y.R., Kimberg, V., Wu, Y. et al. Photodissociation spectroscopy via a rovibrational resonance in intense UV pulses. Physical Review Research, 2022, 4(4): 043001. DOI:10.1103/PhysRevResearch.4.043001
    9. Xing, Y.-H., Zhang, J., Huo, X.-X. et al. Generation of elliptical isolated attosecond pulse from oriented H 2 + in a linearly polarized laser field. Chinese Physics B, 2022, 31(4): 043203. DOI:10.1088/1674-1056/ac398b
    10. Liu, Y.R., Kimberg, V., Wu, Y. et al. Electron-rotation coupling in UV photodissociation of aligned diatomics. Physical Review Research, 2022, 4(1): 013066. DOI:10.1103/PhysRevResearch.4.013066
    11. Liu, Y.R., Kimberg, V., Wu, Y. et al. Ultraviolet Pump-Probe Photodissociation Spectroscopy of Electron-Rotation Coupling in Diatomics. Journal of Physical Chemistry Letters, 2021, 12(23): 5534-5539. DOI:10.1021/acs.jpclett.1c01387

    Other cited types(0)

Catalog

    Article views (545) PDF downloads (448) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return