Core-Excited Molecules by Resonant Intense X-Ray Pulses Involving Electron-Rotation Coupling
-
Abstract
It has been reported that electron-rotation coupling plays a significant role in diatomic nuclear dynamics induced by intense VUV pulses [Phys. Rev. A 102 (2020) 033114; Phys. Rev. Res. 2 (2020) 043348]. As a further step, we present here investigations of the electron-rotation coupling effect in the presence of Auger decay channel for core-excited molecules, based on theoretical modeling of the total electron yield (TEY), resonant Auger scattering (RAS) and x-ray absorption spectra (XAS) for two showcases of CO and CH molecules excited by resonant intense x-ray pulses. The Wigner D-functions and the universal transition dipole operators are introduced to include the electron-rotation coupling for the core-excitation process. It is shown that with the pulse intensity up to , no sufficient influence of the electron-rotation coupling on the TEY and RAS spectra can be observed. This can be explained by a suppression of the induced electron-rotation dynamics due to the fast Auger decay channel, which does not allow for effective Rabi cycling even at extreme field intensities, contrary to transitions in optical or VUV range. For the case of XAS, however, relative errors of about 10% and 30% are observed for the case of CO and CH, respectively, when the electron-rotation coupling is neglected. It is concluded that conventional treatment of the photoexcitation, neglecting the electron-rotation coupling, can be safely and efficiently employed to study dynamics at the x-ray transitions by means of electron emission spectroscopy, yet the approximation breaks down for nonlinear processes as stimulated emission, especially for systems with light atoms. -
-
References
[1] Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F J, Ding Y, Dowell D, Edstrom S, Fisher A, Frisch J, Gilevich S, Hastings J, Hays G, Hering P, Huang Z, Iverson R, Loos H, Messerschmidt M, Miahnahri A, Moeller S, Nuhn H D, Pile G, Ratner D, Rzepiela J, Schultz D, Smith T, Stefan P, Tompkins H, Turner J, Welch J, White W, Wu J, Yocky G, and Galayda J 2010 Nat. Photon. 4 641 doi: 10.1038/nphoton.2010.176[2] Ullrich J, Rudenko A, and Moshammer R 2012 Annu. Rev. Phys. Chem. 63 635 doi: 10.1146/annurev-physchem-032511-143720[3] Harmand M, Coffee R, Bionta M R, Chollet M, French D, Zhu D, Fritz D M, Lemke H T, Medvedev N, Ziaja B, Toleikis S, and Cammarata M 2013 Nat. Photon. 7 215 doi: 10.1038/nphoton.2013.11[4] Bostedt C, Boutet S, Fritz D M, Huang Z, Lee H J, Lemke H T, Robert A, Schlotter W F, Turner J J, and Williams G J 2016 Rev. Mod. Phys. 88 015007 doi: 10.1103/RevModPhys.88.015007[5] Pellegrini C, Marinelli A, and Reiche S 2016 Rev. Mod. Phys. 88 015006 doi: 10.1103/RevModPhys.88.015006[6] Shi X, Wu Y, Wang J G, Kimberg V, and Zhang S B 2020 Phys. Rev. A 101 023401 doi: 10.1103/PhysRevA.101.023401[7] Rohringer N and Santra R 2012 Phys. Rev. A 86 043434 doi: 10.1103/PhysRevA.86.043434[8] Bian Q, Wu Y, Wang J G, and Zhang S B 2019 Phys. Rev. A 99 033404 doi: 10.1103/PhysRevA.99.033404[9] Berrah N, Bozek J, Costello J, Düsterer S, Fang L, Feldhaus J, Fukuzawa H, Hoener M, Jiang Y, Johnsson P, Kennedy E, Meyer M, Moshammer R, Radcliffe P, Richter M, Rouzée A, Rudenko A, Sorokin A, Tiedtke K, Ueda K, Ullrich J, and Vrakking M 2010 J. Mod. Opt. 57 1015 doi: 10.1080/09500340.2010.487946[10] Seddon E A et al.. 2017 Rep. Prog. Phys. 80 115901 doi: 10.1088/1361-6633/aa7cca[11] Xiao F, Fan X, Wang L, Zhang D, Wu J, Wang X, and Zhao Z 2020 Chin. Phys. Lett. 37 114202 doi: 10.1088/0256-307X/37/11/114202[12] Wang X, Wang L, Xiao F, Zhang D, Lü Z, Yuan J, and Zhao Z 2020 Chin. Phys. Lett. 37 023201 doi: 10.1088/0256-307X/37/2/023201[13] Rohringer N and Santra R 2008 Phys. Rev. A 77 053404 doi: 10.1103/PhysRevA.77.053404[14] Liu J C, Sun Y P, Wang C K, Ågren H, and Gel'mukhanov F 2010 Phys. Rev. A 81 043412 doi: 10.1103/PhysRevA.81.043412[15] Cederbaum L S, Chiang Y C, Demekhin P V, and Moiseyev N 2011 Phys. Rev. Lett. 106 123001 doi: 10.1103/PhysRevLett.106.123001[16] Ledingham K W D, McKenna P, and Singhal R P 2003 Science 300 1107 doi: 10.1126/science.1080552[17] Došlić N 2006 Phys. Rev. A 74 013402 doi: 10.1103/PhysRevA.74.013402[18] Baykusheva D, Kraus P M, Zhang S B, Rohringer N, and Wörner H J 2014 Faraday Discuss. 171 113 doi: 10.1039/C4FD00018H[19] Demekhin P V, Chiang Y C, and Cederbaum L S 2011 Phys. Rev. A 84 033417 doi: 10.1103/PhysRevA.84.033417[20] Zhang S B and Rohringer N 2014 Phys. Rev. A 89 013407 doi: 10.1103/PhysRevA.89.013407[21] Feng H, Zhang Y Z, and Jiang Y H 2016 Laser & Optoelectron. Prog. 53 010002 doi: 10.3788/LOP53.010002[22] Yuan J, Ma Y, Li R, Ma H, Zhang Y, Ye D, Shen Z, Yan T, Wang X, Weidemüller M, and Jiang Y 2020 Chin. Phys. Lett. 37 053201 doi: 10.1088/0256-307X/37/5/053201[23] Ott C, Aufleger L, Ding T, Rebholz M, Magunia A, Hartmann M, Stooß V, Wachs D, Birk P, Borisova G D, Meyer K, Rupprecht P, da C C C, Moshammer R, Attar A R, Gaumnitz T, Loh Z H, Düsterer S, Treusch R, Ullrich J, Jiang Y, Meyer M, Lambropoulos P, and Pfeifer T 2019 Phys. Rev. Lett. 123 163201 doi: 10.1103/PhysRevLett.123.163201[24] Huang Y, Qin C C, Zhang Y Z, Wang X C, Yan T M, and Jiang Y H 2019 Chin. Phys. B 28 093202 doi: 10.1088/1674-1056/ab3444[25] Li F, Yang Y J, Chen J, Liu X J, Wei Z Y, and Wang B B 2020 Chin. Phys. Lett. 37 113201 doi: 10.1088/0256-307X/37/11/113201[26] Sun T, Zhang S W, Wang R, Feng S, Liu Y, Lv H, and Xu H F 2020 Chin. Phys. Lett. 37 043301 doi: 10.1088/0256-307X/37/4/043301[27] Liu Y R, Wu Y, Wang J G, Vendrell O, Kimberg V, and Zhang S B 2020 Phys. Rev. A 102 033114 doi: 10.1103/PhysRevA.102.033114[28] Liu Y R, Wu Y, Wang J G, Vendrell O, Kimberg V, and Zhang S B 2020 Phys. Rev. Res. 2 043348 doi: 10.1103/PhysRevResearch.2.043348[29] Mosnier J P, Kennedy E T, van Kampen P, Cubaynes D, Guilbaud S, Sisourat N, Puglisi A, Carniato S, and Bizau J M 2016 Phys. Rev. A 93 061401 doi: 10.1103/PhysRevA.93.061401[30] Kennedy E T, Mosnier J P, van Kampen P, Bizau J M, Cubaynes D, Guilbaud S, Carniato S, Puglisi A, and Sisourat N 2018 Phys. Rev. A 97 043410 doi: 10.1103/PhysRevA.97.043410[31] Sun Z, Wang C, Zhao W, and Yang C 2018 J. Chem. Phys. 149 224307 doi: 10.1063/1.5052514[32] Badankó P, Halász G J, Cederbaum L S, Á V, and Csehi A 2018 J. Chem. Phys. 149 181101 doi: 10.1063/1.5054775[33] Tóth A, Badankó P, Halász G J, Vibók Á, and Csehi A 2018 Chem. Phys. 515 418 doi: 10.1016/j.chemphys.2018.05.002[34] Tóth A, Csehi A, Halász G J, and Vibók A 2020 Phys. Rev. Res. 2 013338 doi: 10.1103/PhysRevResearch.2.013338[35] Shelkovnikov A, Butcher R J, Chardonnet C, and Amy-Klein A 2008 Phys. Rev. Lett. 100 150801 doi: 10.1103/PhysRevLett.100.150801[36] Rosen G 1971 Phys. Rev. D 4 275 doi: 10.1103/PhysRevD.4.275[37] Cohen E R 1952 Phys. Rev. 88 353 doi: 10.1103/PhysRev.88.353[38] Zhang S B, Kimberg V, and Rohringer N 2016 Phys. Rev. A 94 063413 doi: 10.1103/PhysRevA.94.063413[39] Piancastelli M N, Neeb M, Kivimäki A, Kempgens B, Köppe H M, Maier K, Bradshaw A M, and Fink R F 1997 J. Phys. B 30 5677 doi: 10.1088/0953-4075/30/24/008[40] Beck M, Jackle A, Worth G, and Meyer H D 2000 Phys. Rep. 324 1 doi: 10.1016/S0370-15739900047-2[41] Agarwal G S 1971 Phys. Rev. A 4 1778 doi: 10.1103/PhysRevA.4.1778[42] Zaheer K and Zubairy M S 1988 Phys. Rev. A 37 1628 doi: 10.1103/PhysRevA.37.1628[43] Brown A, Meath W J, and Tran P 2000 Phys. Rev. A 63 013403 doi: 10.1103/PhysRevA.63.013403[44] Cederbaum L S and Domcke W 1981 J. Phys. B 14 4665 doi: 10.1088/0022-3700/14/23/025[45] Domcke W 1991 Phys. Rep. 208 97 doi: 10.1016/0370-15739190125-6[46] Pahl E, Meyer H D, and Cederbaum L S 1996 Z. Phys. D 38 215 doi: 10.1007/s004600050086[47] Demekhin P V and Cederbaum L S 2011 Phys. Rev. A 83 023422 doi: 10.1103/PhysRevA.83.023422[48] Demekhin P V and Cederbaum L S 2013 J. Phys. B 46 164008 doi: 10.1088/0953-4075/46/16/164008[49] Skytt P, Glans P, Gunnelin K, Guo J H, Nordgren J, Luo Y, and Ågren H 1997 Phys. Rev. A 55 134 doi: 10.1103/PhysRevA.55.134[50] Biglari Z, Shayesteh A, and Maghari A 2014 Comput. Theor. Chem. 1047 22 doi: 10.1016/j.comptc.2014.08.012[51] Butler S E, Guberman S L, and Dalgarno A 1977 Phys. Rev. A 16 500 doi: 10.1103/PhysRevA.16.500[52] Worth G A, Beck M H, Jäckle A, Vendrell O and Meyer H D, The MCTDH Package , Version 8.2, 2000; Meyer H D, Version 8.3 2002, Version 8.4 2007; Vendrell O and Meyer H D; Version 8.5 2013; Version 8.5 contains the ML-MCTDH algorithm. Current versions: 8.4.18 and 8.5.11 2019. Used version: exchange with “Used version” See http://mctdh.uni-hd.de/ -
Related Articles
[1] WANG Xiang-Li, DONG Chen-Zhong, SU Mao-Gen, KOIKE Fumihiro. Fluorescence and Auger Decay Properties of the Core-Excited F-Like Ions from Ne to Kr [J]. Chin. Phys. Lett., 2012, 29(4): 043201. doi: 10.1088/0256-307X/29/4/043201 [2] LI Hui-Liang, WANG Xiao-Jun, YUAN Jun-Lin, ZHAO Jing-Tai, YANG Xin-Xin, ZHANG Zhi-Jun, CHEN Hao-Hong, ZHANG Guo-Bin, SHI Chao-Shu. VUV/UV/X-Ray Excited Luminescent Properties of Eu3+ nd Pr3+ Doped BiSbO4 [J]. Chin. Phys. Lett., 2008, 25(10): 3790-3793. [3] CHEN Ji-Gen, LI Chen, CHI Fang-Ping, YANG Yu-Jun. Single X-Ray Attosecond Pulse Generation by Using Combined Pulses Irradiating on a United Two-Atom System [J]. Chin. Phys. Lett., 2007, 24(1): 86-89. [4] LIN Gui-Fang, ZHANG Li. X-Ray Emission from Rotation-Powered Pulsars [J]. Chin. Phys. Lett., 2005, 22(4): 1022-1024. [5] WANG Qi, CHENG Yuan-Li, ZHAO Yong-Peng, XIA Yuan-Qin, CHEN Jian-Xin, XIAO Yi-Fan. X-Ray and Extreme Ultraviolet Emission from Small-Sized Kr Clusters Irradiated by 150-fs Laser Pulses [J]. Chin. Phys. Lett., 2003, 20(8): 1309-1311. [6] LIU Timon Cheng-Yi, GUO Hong, FU Xi-Quan, HU Wei, YU Song. Maxwell-Schrödinger Equation for X-Ray Laser Propagation andInterferometry Measurement of Plasma Electron Density [J]. Chin. Phys. Lett., 2001, 18(11): 1490-1492. [7] SHI Yue-Jiang, WAN Bao-Nian. Energy Resolution Effects on Plasma Electron Temperature Measurements by Soft X-Ray Pulse-Height-Analysis [J]. Chin. Phys. Lett., 2001, 18(4): 562-563. [8] WANG Ying-Song, XU Zhi-Zhan. Subfemtosecond X-ray Pulses Produced Directly by High Harmonic Generation [J]. Chin. Phys. Lett., 2000, 17(7): 491-492. [9] GU Yu-qiu, LI Ying-jun, LI Yu-tong, CHUNYU Shu-tai, YOU Yong-lu, HUANG Wen-zhong, HE Shao-tang, HE Ying-ling, LU Li-zhu, YUAN Xiao-dong, WEI Xiao-feng, ZHANG Chuan-fei, ZHANG Jie. Nickel-Like Molybdenum and Niobium Soft X-Ray Lasing Driven by 200 ps Laser Pulses with 50 J of Energy [J]. Chin. Phys. Lett., 1999, 16(9): 653-655. [10] HOU Meiying, FENG Baohua, ZHANG Jian, SHE Yongbo, MI Zhonglu, CHEN Tianjie. EXPERIMENTAL DETERMINATION OFTHE SPIN-ROTATION COUPLING IN NaXe MOLECULES [J]. Chin. Phys. Lett., 1986, 3(9): 397-400. -
Cited by
Periodical cited type(11)
1. Liu, Y.R., Kimberg, V., Gong, M. et al. Spin-orbit splitting on photodissociation in open-shell diatomics by intense UV pulses. Physical Review A, 2025, 111(1): 013122. DOI:10.1103/PhysRevA.111.013122 2. Xia Dong, X., Gong, M., Zhao, X. et al. Unraveling photodissociation dynamics by sub-femtosecond ultraviolet pulses: insights into fragmental kinetics and carrier-envelope phase characterization. New Journal of Physics, 2024, 26(1): 013050. DOI:10.1088/1367-2630/ad1e92 3. Nan, Q.-W., Wang, C., Yu, X.-Y. et al. Resonant Auger Scattering by Attosecond X-Ray Pulses. Chinese Physics Letters, 2023, 40(9): 093201. DOI:10.1088/0256-307X/40/9/093201 4. Wang, C., Gong, M., Cheng, Y. et al. Time-Resolved Resonant Auger Scattering Clocks Distortion of a Molecule. Journal of Physical Chemistry Letters, 2023, 14(24): 5475-5480. DOI:10.1021/acs.jpclett.3c01347 5. Fu, T., Guo, F., Wang, J. et al. Waveform Modulation of High-Order Harmonics Generated from an Atom Irradiated by a Laser Pulse and a Weak Orthogonal Electrostatic Field. Symmetry, 2023, 15(4): 901. DOI:10.3390/sym15040901 6. Cao, D.-D., Pan, X.-F., Zhang, J. et al. Spectral shift of solid high-order harmonics from different channels in a combined laser field. Chinese Physics B, 2023, 32(3): 034204. DOI:10.1088/1674-1056/aca4bf 7. Dong, X.X., Liu, Y.R., Kimberg, V. et al. Carrier-envelope-phase measurement of sub-cycle UV pulses using angular photofragment distributions. Communications Physics, 2022, 5(1): 181. DOI:10.1038/s42005-022-00959-3 8. Liu, Y.R., Kimberg, V., Wu, Y. et al. Photodissociation spectroscopy via a rovibrational resonance in intense UV pulses. Physical Review Research, 2022, 4(4): 043001. DOI:10.1103/PhysRevResearch.4.043001 9. Xing, Y.-H., Zhang, J., Huo, X.-X. et al. Generation of elliptical isolated attosecond pulse from oriented H 2 + in a linearly polarized laser field. Chinese Physics B, 2022, 31(4): 043203. DOI:10.1088/1674-1056/ac398b 10. Liu, Y.R., Kimberg, V., Wu, Y. et al. Electron-rotation coupling in UV photodissociation of aligned diatomics. Physical Review Research, 2022, 4(1): 013066. DOI:10.1103/PhysRevResearch.4.013066 11. Liu, Y.R., Kimberg, V., Wu, Y. et al. Ultraviolet Pump-Probe Photodissociation Spectroscopy of Electron-Rotation Coupling in Diatomics. Journal of Physical Chemistry Letters, 2021, 12(23): 5534-5539. DOI:10.1021/acs.jpclett.1c01387 Other cited types(0)