Development of a 3He Gas Filling Station at the China Spallation Neutron Source
-
Abstract
At the China Spallation Neutron Source (CSNS), we have developed a custom gas-filling station, a glassblowing workshop, and a spin-exchange optical pumping (SEOP) system for producing high-quality 3He-based neutron spin filter (NSF) cells. The gas-filling station is capable of routinely filling 3He cells made from GE180 glass of various dimensions, to be used as neutron polarizers and analyzers on beamlines at the CSNS. Performance tests on cells fabricated at our gas-filling station are conducted via neutron transmission and nuclear-magnetic-resonance measurements, revealing nominal filling pressures, and a saturated 3He polarization in the region of 80%, with a lifetime of approximately 240 hours. These results demonstrate our ability to produce competitive NSF cells to meet the ever-increasing research needs of the polarized neutron research community. -
-
References
[1] Chen H and Wang X L 2016 Nat. Mater. 15 689 doi: 10.1038/nmat4655[2] Chatterji T 2006 Neutron Scattering from Magnetic Materials ed Chatterji T Amsterdam: Elsevier Science chap 1 p 1 doi: 10.1016/B978-044451050-1/50002-1[3] Freund A, Pynn R, Stirling W, and Zeyen C 1983 Physica B+C 120 86 doi: 10.1016/0378-43638390345-5[4] Sinclair R N and Brockhouse B N 1960 Phys. Rev. 120 1638 doi: 10.1103/PhysRev.120.1638[5] Heil W, Andersen K, Cywinski R, Humblot H, Ritter C, Roberts T, and Stewart J 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 485 551 doi: 10.1016/S0168-90020100926-3[6] Babcock E, Salhi Z, Gainov R, Woracek R, Soltner H, Pistel P, Beule F, Bussmann K, Heynen A, Kämmerling H, Suxdorf F, Strobl M, Russina M, Voigt J, and Ioffe A 2017 J. Phys.: Conf. Ser. 862 012002 doi: 10.1088/1742-6596/862/1/012002[7] Boag S, Parnell S, Frost C, Andersen K, and Babcock E 2007 Physica B 397 179 doi: 10.1016/j.physb.2007.02.054[8] Tong X, Jiang C, Lauter V, Ambaye H, Brown D, Crow L, Gentile T, Goyette R, Lee W T, Parizzi A, and Robertson J 2012 Rev. Sci. Instrum. 83 075101 doi: 10.1063/1.4731261[9] Sears V F 1992 Neutron News 3 26 doi: 10.1080/10448639208218770[10] Fitzsimmons W A, Tankersley L L, and Walters G K 1969 Phys. Rev. 179 156 doi: 10.1103/PhysRev.179.156[11] Cates G D, Schaefer S R, and Happer W 1988 Phys. Rev. A 37 2877 doi: 10.1103/PhysRevA.37.2877[12] Parnell S, Babcock E, Nünighoff K, Skoda M, Boag S, Masalovich S, Chen W, Georgii R, Wild J, and Frost C 2009 Nucl. Instrum. Methods Phys. Res. Sect. A 598 774 doi: 10.1016/j.nima.2008.10.009[13] Babcock E, Chann B, Walker T G, Chen W C, and Gentile T R 2006 Phys. Rev. Lett. 96 083003 doi: 10.1103/PhysRevLett.96.083003[14] Gentile T R, Nacher P J, Saam B, and Walker T G 2017 Rev. Mod. Phys. 89 045004 doi: 10.1103/RevModPhys.89.045004[15] Yan S, Zhang M F, Guo W C, Wang W Z, Gong J, Liang T J, Liu B Q, Peng M, Peng S M, Sun G, Tu X Q, Yan H Y, Zhang J H, and Zheng H 2019 Sci. Chin. Phys. Mech. & Astron. 62 102021 doi: 10.1007/s11433-019-9410-3[16] Passell L and Schermer R I 1966 Phys. Rev. 150 146 doi: 10.1103/PhysRev.150.146[17] Coulter K, McDonald A, Happer W, Chupp T, and Wagshul M 1988 Nucl. Instrum. Methods Phys. Res. Sect. A 270 90 doi: 10.1016/0168-90028890013-7[18] Babcock E and Ioffe A 2011 Physica B 406 2448 doi: 10.1016/j.physb.2010.10.088[19] Jiang C, Tong X, Brown D, Lee W T, Ambaye H, Craig J, Crow L, Culbertson H, Goyette R, Graves-Brook M, Hagen M, Kadron B, Lauter V, McCollum L, Robertson J, Winn B, and Vandegrift A 2013 Phys. Procedia 42 191 doi: 10.1016/j.phpro.2013.03.194[20] Chen W, Gentile T, Fu C, Watson S, Jones G, McIver J, and Rich D 2011 J. Phys.: Conf. Ser. 294 012003 doi: 10.1088/1742-6596/294/1/012003[21] Rich D, Gentile T, Smith T, Thompson A, and Jones G 2002 Appl. Phys. Lett. 80 2210 doi: 10.1063/1.1461424[22] Chen W C, Gentile T R, Walker T G, and Babcock E 2007 Phys. Rev. A 75 013416 doi: 10.1103/PhysRevA.75.013416[23] Batz M, Baeßler S, Heil W, Otten E, Rudersdorf D, Schmiedeskamp J, Sobolev Y, and Wolf M 2005 J. Research Natl. Inst. Stand. Technol. 110 293 doi: 10.6028/jres.110.042[24] Chann B, Babcock E, Anderson L, and Walker T 2002 Phys. Rev. A 66 032703 doi: 10.1103/PhysRevA.66.032703[25] Babcock E, Nelson I A, Kadlecek S, and Walker T G 2005 Phys. Rev. A 71 013414 doi: 10.1103/PhysRevA.71.013414[26] Romalis M and Cates G 1998 Phys. Rev. A 58 3004 doi: 10.1103/PhysRevA.58.3004[27] Okudaira T, Oku T, Ino T, Hayashida H, Kira H, Sakai K, Hiroi K, Takahashi S, Aizawa K, Endo H, Endo S, Hino M, Hirota K, Honda T, Ikeda K, Kakurai K, Kambara W, Kitaguchi M, Oda T, Ohshita H, Otomo T, Shimizu H, Shinohara T, Suzuki J, and Yamamoto T 2020 Nucl. Instrum. Methods Phys. Res. Sect. A 977 164301 doi: 10.1016/j.nima.2020.164301[28] Boag S, Jiang C, Tong X, and Parnell S 2014 J. Phys.: Conf. Ser. 528 012019 doi: 10.1088/1742-6596/528/1/012019 -
Cited by
Periodical cited type(11)
1. Zhang, M., Yang, Z., Zhang, J. et al. First use of a polarized 3He neutron spin filter on the Back-n White Neutron Source of CSNS. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2025. DOI:10.1016/j.nima.2024.170184 2. Tang, J., Wang, B., Huang, C. et al. A Compact in situ Polarized 3He System for Neutron Scattering. Chinese Physics Letters, 2025, 42(2): 022901. DOI:10.1088/0256-307X/42/2/022901 3. Jiang, C.. An overview of polarized neutron instruments and techniques in Asia Pacific. AAPPS Bulletin, 2023, 33(1): 21. DOI:10.1007/s43673-023-00093-4 4. Tian, L., Salman, A., Huang, C.-Y. et al. Developing time-of-flight polarized neutron capability at the China Spallation Neutron Source. Nuclear Science and Techniques, 2023, 34(10): 146. DOI:10.1007/s41365-023-01286-0 5. Wang, B., Zhang, J., Lu, Y. et al. Analysis of the thermophysical process within the SEOP polarized 3He system. Journal of Applied Physics, 2023, 133(17): 173105. DOI:10.1063/5.0145880 6. Tian, L., Huang, C., Dong, Y. et al. Development of polarized neutron techniques at the China Spallation Neutron Source. Journal of Physics: Conference Series, 2023, 2481(1): 012008. DOI:10.1088/1742-6596/2481/1/012008 7. Chen, Y., Yu, M., Ma, Y. et al. Quadrupolar interaction induced frequency shift of 131 Xe nuclear spins on the surface of silicon. Journal of Physics D: Applied Physics, 2022, 55(35): 355102. DOI:10.1088/1361-6463/ac7757 8. Salman, A., Zhou, J., Yang, J. et al. Development of Time-of-Flight Polarized Neutron Imaging at the China Spallation Neutron Source. Chinese Physics Letters, 2022, 39(6): 062901. DOI:10.1088/0256-307X/39/6/062901 9. Zhang, J., Huang, C., Qin, Z. et al. In-situ optical pumping for polarizing 3He neutron spin filters at the China Spallation Neutron Source. Science China: Physics, Mechanics and Astronomy, 2022, 65(4): 241011. DOI:10.1007/s11433-021-1876-0 10. Li, X.-X., Liu, L.-X., Jiang, W. et al. Measurements of the 107Ag neutron capture cross sections with pulse height weighting technique at the CSNS Back-n facility. Chinese Physics B, 2022, 31(3): 038204. DOI:10.1088/1674-1056/ac48fd 11. Huang, C., Zhang, J., Ye, F. et al. Development of a Spin-Exchange Optical Pumping-Based Polarized 3He System at the China Spallation Neutron Source (CSNS). Chinese Physics Letters, 2021, 38(9): 092801. DOI:10.1088/0256-307X/38/9/092801 Other cited types(0)