Processing math: 100%

Development of a 3He Gas Filling Station at the China Spallation Neutron Source

Funds: Supported by the National Key Research and Development Program of China (Grant No. 2020YFA0406000), the Scientific Instrument Development Project of the Chinese Academy of Sciences [Grant No. 284(2018)], and the National Natural Science Foundation of China (Grant No. 11875265).
  • Received Date: March 09, 2021
  • Published Date: April 30, 2021
  • At the China Spallation Neutron Source (CSNS), we have developed a custom gas-filling station, a glassblowing workshop, and a spin-exchange optical pumping (SEOP) system for producing high-quality 3He-based neutron spin filter (NSF) cells. The gas-filling station is capable of routinely filling 3He cells made from GE180 glass of various dimensions, to be used as neutron polarizers and analyzers on beamlines at the CSNS. Performance tests on cells fabricated at our gas-filling station are conducted via neutron transmission and nuclear-magnetic-resonance measurements, revealing nominal filling pressures, and a saturated 3He polarization in the region of 80%, with a lifetime of approximately 240 hours. These results demonstrate our ability to produce competitive NSF cells to meet the ever-increasing research needs of the polarized neutron research community.
  • Article Text

  • [1]
    Chen H and Wang X L 2016 Nat. Mater. 15 689 doi: 10.1038/nmat4655

    CrossRef Google Scholar

    [2]
    Chatterji T 2006 Neutron Scattering from Magnetic Materials ed Chatterji T Amsterdam: Elsevier Science chap 1 p 1 doi: 10.1016/B978-044451050-1/50002-1

    CrossRef Google Scholar

    [3]
    Freund A, Pynn R, Stirling W, and Zeyen C 1983 Physica B+C 120 86 doi: 10.1016/0378-43638390345-5

    CrossRef Google Scholar

    [4]
    Sinclair R N and Brockhouse B N 1960 Phys. Rev. 120 1638 doi: 10.1103/PhysRev.120.1638

    CrossRef Google Scholar

    [5]
    Heil W, Andersen K, Cywinski R, Humblot H, Ritter C, Roberts T, and Stewart J 2002 Nucl. Instrum. Methods Phys. Res. Sect. A 485 551 doi: 10.1016/S0168-90020100926-3

    CrossRef Google Scholar

    [6]
    Babcock E, Salhi Z, Gainov R, Woracek R, Soltner H, Pistel P, Beule F, Bussmann K, Heynen A, Kämmerling H, Suxdorf F, Strobl M, Russina M, Voigt J, and Ioffe A 2017 J. Phys.: Conf. Ser. 862 012002 doi: 10.1088/1742-6596/862/1/012002

    CrossRef Google Scholar

    [7]
    Boag S, Parnell S, Frost C, Andersen K, and Babcock E 2007 Physica B 397 179 doi: 10.1016/j.physb.2007.02.054

    CrossRef Google Scholar

    [8]
    Tong X, Jiang C, Lauter V, Ambaye H, Brown D, Crow L, Gentile T, Goyette R, Lee W T, Parizzi A, and Robertson J 2012 Rev. Sci. Instrum. 83 075101 doi: 10.1063/1.4731261

    CrossRef Google Scholar

    [9]
    Sears V F 1992 Neutron News 3 26 doi: 10.1080/10448639208218770

    CrossRef Google Scholar

    [10]
    Fitzsimmons W A, Tankersley L L, and Walters G K 1969 Phys. Rev. 179 156 doi: 10.1103/PhysRev.179.156

    CrossRef Google Scholar

    [11]
    Cates G D, Schaefer S R, and Happer W 1988 Phys. Rev. A 37 2877 doi: 10.1103/PhysRevA.37.2877

    CrossRef Google Scholar

    [12]
    Parnell S, Babcock E, Nünighoff K, Skoda M, Boag S, Masalovich S, Chen W, Georgii R, Wild J, and Frost C 2009 Nucl. Instrum. Methods Phys. Res. Sect. A 598 774 doi: 10.1016/j.nima.2008.10.009

    CrossRef Google Scholar

    [13]
    Babcock E, Chann B, Walker T G, Chen W C, and Gentile T R 2006 Phys. Rev. Lett. 96 083003 doi: 10.1103/PhysRevLett.96.083003

    CrossRef Google Scholar

    [14]
    Gentile T R, Nacher P J, Saam B, and Walker T G 2017 Rev. Mod. Phys. 89 045004 doi: 10.1103/RevModPhys.89.045004

    CrossRef Google Scholar

    [15]
    Yan S, Zhang M F, Guo W C, Wang W Z, Gong J, Liang T J, Liu B Q, Peng M, Peng S M, Sun G, Tu X Q, Yan H Y, Zhang J H, and Zheng H 2019 Sci. Chin. Phys. Mech. & Astron. 62 102021 doi: 10.1007/s11433-019-9410-3

    CrossRef Google Scholar

    [16]
    Passell L and Schermer R I 1966 Phys. Rev. 150 146 doi: 10.1103/PhysRev.150.146

    CrossRef Google Scholar

    [17]
    Coulter K, McDonald A, Happer W, Chupp T, and Wagshul M 1988 Nucl. Instrum. Methods Phys. Res. Sect. A 270 90 doi: 10.1016/0168-90028890013-7

    CrossRef Google Scholar

    [18]
    Babcock E and Ioffe A 2011 Physica B 406 2448 doi: 10.1016/j.physb.2010.10.088

    CrossRef Google Scholar

    [19]
    Jiang C, Tong X, Brown D, Lee W T, Ambaye H, Craig J, Crow L, Culbertson H, Goyette R, Graves-Brook M, Hagen M, Kadron B, Lauter V, McCollum L, Robertson J, Winn B, and Vandegrift A 2013 Phys. Procedia 42 191 doi: 10.1016/j.phpro.2013.03.194

    CrossRef Google Scholar

    [20]
    Chen W, Gentile T, Fu C, Watson S, Jones G, McIver J, and Rich D 2011 J. Phys.: Conf. Ser. 294 012003 doi: 10.1088/1742-6596/294/1/012003

    CrossRef Google Scholar

    [21]
    Rich D, Gentile T, Smith T, Thompson A, and Jones G 2002 Appl. Phys. Lett. 80 2210 doi: 10.1063/1.1461424

    CrossRef Google Scholar

    [22]
    Chen W C, Gentile T R, Walker T G, and Babcock E 2007 Phys. Rev. A 75 013416 doi: 10.1103/PhysRevA.75.013416

    CrossRef Google Scholar

    [23]
    Batz M, Baeßler S, Heil W, Otten E, Rudersdorf D, Schmiedeskamp J, Sobolev Y, and Wolf M 2005 J. Research Natl. Inst. Stand. Technol. 110 293 doi: 10.6028/jres.110.042

    CrossRef Google Scholar

    [24]
    Chann B, Babcock E, Anderson L, and Walker T 2002 Phys. Rev. A 66 032703 doi: 10.1103/PhysRevA.66.032703

    CrossRef Google Scholar

    [25]
    Babcock E, Nelson I A, Kadlecek S, and Walker T G 2005 Phys. Rev. A 71 013414 doi: 10.1103/PhysRevA.71.013414

    CrossRef Google Scholar

    [26]
    Romalis M and Cates G 1998 Phys. Rev. A 58 3004 doi: 10.1103/PhysRevA.58.3004

    CrossRef Google Scholar

    [27]
    Okudaira T, Oku T, Ino T, Hayashida H, Kira H, Sakai K, Hiroi K, Takahashi S, Aizawa K, Endo H, Endo S, Hino M, Hirota K, Honda T, Ikeda K, Kakurai K, Kambara W, Kitaguchi M, Oda T, Ohshita H, Otomo T, Shimizu H, Shinohara T, Suzuki J, and Yamamoto T 2020 Nucl. Instrum. Methods Phys. Res. Sect. A 977 164301 doi: 10.1016/j.nima.2020.164301

    CrossRef Google Scholar

    [28]
    Boag S, Jiang C, Tong X, and Parnell S 2014 J. Phys.: Conf. Ser. 528 012019 doi: 10.1088/1742-6596/528/1/012019

    CrossRef Google Scholar

  • Cited by

    Periodical cited type(11)

    1. Zhang, M., Yang, Z., Zhang, J. et al. First use of a polarized 3He neutron spin filter on the Back-n White Neutron Source of CSNS. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2025. DOI:10.1016/j.nima.2024.170184
    2. Tang, J., Wang, B., Huang, C. et al. A Compact in situ Polarized 3He System for Neutron Scattering. Chinese Physics Letters, 2025, 42(2): 022901. DOI:10.1088/0256-307X/42/2/022901
    3. Jiang, C.. An overview of polarized neutron instruments and techniques in Asia Pacific. AAPPS Bulletin, 2023, 33(1): 21. DOI:10.1007/s43673-023-00093-4
    4. Tian, L., Salman, A., Huang, C.-Y. et al. Developing time-of-flight polarized neutron capability at the China Spallation Neutron Source. Nuclear Science and Techniques, 2023, 34(10): 146. DOI:10.1007/s41365-023-01286-0
    5. Wang, B., Zhang, J., Lu, Y. et al. Analysis of the thermophysical process within the SEOP polarized 3He system. Journal of Applied Physics, 2023, 133(17): 173105. DOI:10.1063/5.0145880
    6. Tian, L., Huang, C., Dong, Y. et al. Development of polarized neutron techniques at the China Spallation Neutron Source. Journal of Physics: Conference Series, 2023, 2481(1): 012008. DOI:10.1088/1742-6596/2481/1/012008
    7. Chen, Y., Yu, M., Ma, Y. et al. Quadrupolar interaction induced frequency shift of 131 Xe nuclear spins on the surface of silicon. Journal of Physics D: Applied Physics, 2022, 55(35): 355102. DOI:10.1088/1361-6463/ac7757
    8. Salman, A., Zhou, J., Yang, J. et al. Development of Time-of-Flight Polarized Neutron Imaging at the China Spallation Neutron Source. Chinese Physics Letters, 2022, 39(6): 062901. DOI:10.1088/0256-307X/39/6/062901
    9. Zhang, J., Huang, C., Qin, Z. et al. In-situ optical pumping for polarizing 3He neutron spin filters at the China Spallation Neutron Source. Science China: Physics, Mechanics and Astronomy, 2022, 65(4): 241011. DOI:10.1007/s11433-021-1876-0
    10. Li, X.-X., Liu, L.-X., Jiang, W. et al. Measurements of the 107Ag neutron capture cross sections with pulse height weighting technique at the CSNS Back-n facility. Chinese Physics B, 2022, 31(3): 038204. DOI:10.1088/1674-1056/ac48fd
    11. Huang, C., Zhang, J., Ye, F. et al. Development of a Spin-Exchange Optical Pumping-Based Polarized 3He System at the China Spallation Neutron Source (CSNS). Chinese Physics Letters, 2021, 38(9): 092801. DOI:10.1088/0256-307X/38/9/092801

    Other cited types(0)

Catalog

    Article views (1239) PDF downloads (481) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return