Processing math: 100%

Topological-Defect-Induced Superstructures on Graphite Surface

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 11674136 and 61901200), Yunnan Province for Recruiting High-Caliber Technological Talents (Grant No. 1097816002), Reserve Talents for Yunnan Young and Middle Aged Academic and Technical Leaders (Grant No. 2017HB010), the Yunnan Province Science and Technology Plan Project (Grant No. 2019FD041), the China Postdoctoral Science Foundation, and the Yunnan Province Postdoctoral Science Foundation.
  • Received Date: August 26, 2020
  • Published Date: January 31, 2021
  • Topological defects in graphene induce structural and electronic modulations. Knowing exact nature of broken-symmetry states around the individual atomic defects of graphene is very important for understanding the electronic properties of this material. We investigate structural dependence on localized electronic states in the vicinity of topological defects on a highly oriented pyrolytic graphite (HOPG) surface, using scanning tunneling microscopy and spectroscopy. Several inherent topological defects on the HOPG surface and the local density of states surrounding them are explored, visualized as scattering wave-related (3×3) R30 superstructures and honeycomb superstructures. In addition, the superstructures observed near the grain boundary have a much higher decay length at specific sites than that reported previously, indicating far greater electron scattering on the quasi-periodic grain boundary.
  • Article Text

  • [1]
    Ziatdinov M, Fujii S, Kusakabe K et al.. 2013 Phys. Rev. B 87 115427 doi: 10.1103/PhysRevB.87.115427

    CrossRef Google Scholar

    [2]
    Yang B, Xu H, Lu J et al.. 2014 J. Am. Chem. Soc. 136 12041 doi: 10.1021/ja5054847

    CrossRef Google Scholar

    [3]
    Xu W Y, Zhang L Z, Huang L et al.. 2019 Chin. Phys. B 28 046801 doi: 10.1088/1674-1056/28/4/046801

    CrossRef Google Scholar

    [4]
    Wu L, Hou T, Li Y et al.. 2013 J. Phys. Chem. C 117 17066 doi: 10.1021/jp405130c

    CrossRef Google Scholar

    [5]
    Vicarelli L, Heerema S J, Dekker C et al.. 2015 ACS Nano 9 3428 doi: 10.1021/acsnano.5b01762

    CrossRef Google Scholar

    [6]
    Hollen S M, Tjung S J, Mattioli K R et al.. 2016 J. Phys.: Condens. Matter 28 034003 doi: 10.1088/0953-8984/28/3/034003

    CrossRef Google Scholar

    [7]
    Banhart F, Kotakoski J and Krasheninnikov A V 2011 ACS Nano 5 26 doi: 10.1021/nn102598m

    CrossRef Google Scholar

    [8]
    Rehman M U, Hua C and Lu Y 2020 Chin. Phys. B 29 057304 doi: 10.1088/1674-1056/ab81ff

    CrossRef Google Scholar

    [9]
    Simonis P, Goffaux C, Thiry P A et al.. 2002 Surf. Sci. 511 319 doi: 10.1016/S0039-60280201511-X

    CrossRef Google Scholar

    [10]
    Sakai K I, Takai K, Fukui K I et al.. 2010 Phys. Rev. B 81 235417 doi: 10.1103/PhysRevB.81.235417

    CrossRef Google Scholar

    [11]
    Luican-Mayer A, Barrios-Vargas J E, Falkenberg J T et al.. 2016 2D Mater. 3 031005 doi: 10.1088/2053-1583/3/3/031005

    CrossRef Google Scholar

    [12]
    Long F, Yasaei P, Sanoj R et al.. 2016 ACS Appl. Mater. & Interfaces 8 18360 doi: 10.1021/acsami.6b04853

    CrossRef Google Scholar

    [13]
    Li S Y, Ren Y N, Liu Y W et al.. 2019 2D Mater. 6 031005 doi: 10.1088/2053-1583/ab2074

    CrossRef Google Scholar

    [14]
    Li J, Lin L, Rui D et al.. 2017 ACS Nano 11 4641 doi: 10.1021/acsnano.7b00313

    CrossRef Google Scholar

    [15]
    Kotakoski J, Krasheninnikov A V, Kaiser U et al.. 2011 Phys. Rev. Lett. 106 105505 doi: 10.1103/PhysRevLett.106.105505

    CrossRef Google Scholar

    [16]
    Sun Z P, Hua C Q, Liu X L et al.. 2020 Phys. Rev. B 101 155114 doi: 10.1103/PhysRevB.101.155114

    CrossRef Google Scholar

    [17]
    Zhang W, Ju Z and Wu W 2019 Phys. Rev. B 100 115120 doi: 10.1103/PhysRevB.100.115120

    CrossRef Google Scholar

    [18]
    Ugeda M M, Brihuega I, Hiebel F et al.. 2012 Phys. Rev. B 85 121402 doi: 10.1103/PhysRevB.85.121402

    CrossRef Google Scholar

    [19]
    Cervenka J and Flipse C F J 2009 Phys. Rev. B 79 195429 doi: 10.1103/PhysRevB.79.195429

    CrossRef Google Scholar

    [20]
    Cervenka J, Katsnelson M I and Flipse C F J 2009 Nat. Phys. 5 840 doi: 10.1038/nphys1399

    CrossRef Google Scholar

    [21]
    Gargiulo F and Yazyev O V 2014 Nano Lett. 14 250 doi: 10.1021/nl403852a

    CrossRef Google Scholar

    [22]
    Gunlycke D and White C T 2011 Phys. Rev. Lett. 106 136806 doi: 10.1103/PhysRevLett.106.136806

    CrossRef Google Scholar

    [23]
    Lahiri J, Lin Y, Bozkurt P et al.. 2010 Nat. Nanotechnol. 5 326 doi: 10.1038/nnano.2010.53

    CrossRef Google Scholar

    [24]
    Meyer J C, Kisielowski C, Erni R et al.. 2008 Nano Lett. 8 3582 doi: 10.1021/nl801386m

    CrossRef Google Scholar

    [25]
    Yazyev O V and Louie S G 2010 Phys. Rev. B 81 195420 doi: 10.1103/PhysRevB.81.195420

    CrossRef Google Scholar

    [26]
    Park J, He G, Feenstra R M et al.. 2013 Nano Lett. 13 3269 doi: 10.1021/nl401473j

    CrossRef Google Scholar

    [27]
    López J C M, Passeggi M C G and Ferrón J 2008 Surf. Sci. 602 671 doi: 10.1016/j.susc.2007.10.030

    CrossRef Google Scholar

    [28]
    Niimi Y, Matsui T, Kambara H et al.. 2006 Phys. Rev. B 73 085421 doi: 10.1103/PhysRevB.73.085421

    CrossRef Google Scholar

    [29]
    Ziatdinov M, Fujii S, Kusakabe K et al.. 2014 Phys. Rev. B 89 155405 doi: 10.1103/PhysRevB.89.155405

    CrossRef Google Scholar

    [30]
    Rutter G M, Crain J N, Guisinger N P et al.. 2007 Science 317 219 doi: 10.1126/science.1142882

    CrossRef Google Scholar

    [31]
    Yan H, Liu C C, Bai K K et al.. 2013 Appl. Phys. Lett. 103 143120 doi: 10.1063/1.4824206

    CrossRef Google Scholar

    [32]
    Liu H, Chen J, Yu H et al.. 2015 Nat. Commun. 6 8180 doi: 10.1038/ncomms9180

    CrossRef Google Scholar

    [33]
    Iqbal M Z, Kelekci O, Iqbal M W et al.. 2014 New J. Phys. 16 083020 doi: 10.1088/1367-2630/16/8/083020

    CrossRef Google Scholar

    [34]
    Jung M, Sohn S D, Park J et al.. 2016 Sci. Rep. 6 22570 doi: 10.1038/srep22570

    CrossRef Google Scholar

    [35]
    Mahmood A, Mallet P and Veuillen J Y 2012 Nanotechnology 23 055706 doi: 10.1088/0957-4484/23/5/055706

    CrossRef Google Scholar

    [36]
    Mallet P, Brihuega I, Bose S et al.. 2012 Phys. Rev. B 86 045444 doi: 10.1103/PhysRevB.86.045444

    CrossRef Google Scholar

    [37]
    Tesch J, Leicht P, Blumenschein F et al.. 2017 Phys. Rev. B 95 075429 doi: 10.1103/PhysRevB.95.075429

    CrossRef Google Scholar

    [38]
    Koepke J C, Wood J D, Estrada D et al.. 2013 ACS Nano 7 75 doi: 10.1021/nn302064p

    CrossRef Google Scholar

    [39]
    Yang H, Mayne A J, Boucherit M et al.. 2010 Nano Lett. 10 943 doi: 10.1021/nl9038778

    CrossRef Google Scholar

    [40]
    Wahl P, Schneider M A, Diekhoner L et al.. 2003 Phys. Rev. Lett. 91 106802 doi: 10.1103/PhysRevLett.91.106802

    CrossRef Google Scholar

  • Related Articles

    [1]FAN Zhi-Qiang, ZHANG Zhen-Hua, QIU Ming, DENG Xiao-Qing, TANG Gui-Ping. Controllable Negative Differential Resistance Behavior of an Azobenzene Molecular Device Induced by Different Molecule-Electrode Distances [J]. Chin. Phys. Lett., 2012, 29(7): 077305. doi: 10.1088/0256-307X/29/7/077305
    [2]REN Hua, LIANG Wei, ZHAO Peng, LIU De-Sheng. Low Bias Negative Differential Resistance with Large Peak-to-Valley Ratio in a BDC60 Junction [J]. Chin. Phys. Lett., 2012, 29(7): 077301. doi: 10.1088/0256-307X/29/7/077301
    [3]FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot [J]. Chin. Phys. Lett., 2012, 29(3): 037303. doi: 10.1088/0256-307X/29/3/037303
    [4]YIN Hai-Tao, LÜ Tian-Quan, LIU Xiao-Jie, XUE Hui-Jie. Spin Accumulation in a Double Quantum Dot Aharonov-Bohm Interferometer [J]. Chin. Phys. Lett., 2009, 26(4): 047302. doi: 10.1088/0256-307X/26/4/047302
    [5]YANG Yuan, LI Gui-Ping, GAO Yong, LIU Jing. Characteristics Analysis of Vertical Double Gate Strained Channel Heterostructure Metal-Oxide-Semiconductor-Field-Effect-Transistor [J]. Chin. Phys. Lett., 2009, 26(2): 027801. doi: 10.1088/0256-307X/26/2/027801
    [6]CHENG Jian-Bing, ZHANG Bo, DUAN Bao-Xing, LI Zhao-Ji. A Novel Super-Junction Lateral Double-Diffused Metal--Oxide--Semiconductor Field Effect Transistor with n-Type Step Doping Buffer Layer [J]. Chin. Phys. Lett., 2008, 25(1): 262-265.
    [7]YANG Fu-Bin, WU Shao-Quan, SUN Wei-Li. Spin-Polarized Transport through the T-Shaped Double Quantum Dots with Fano--Kondo Interaction [J]. Chin. Phys. Lett., 2007, 24(7): 2056-2059.
    [8]HE Jin, BIAN Wei, TAO Ya-Dong, LIU Feng, SONG Yan, ZHANG Xing. Numerical Study on a Lateral Double-Gate Tunnelling Field Effect Transistor [J]. Chin. Phys. Lett., 2006, 23(12): 3373-3375.
    [9]LI Xian-Jie, YAN Fa-Wang, ZHANG Wen-Jun, ZHANG Rong-Gui, LIU Wei-Ji, AO Jin-Ping, ZENG Qing-Ming, LIU Shi-Yong, LIANG Chun-Guang. Field Effect Transistor with Self-Organized In0.15Ga0.85As/GaAs Quantum Wires as a Channel Grown on (553)B GaAs Substrates [J]. Chin. Phys. Lett., 2001, 18(8): 1147-1149.
    [10]LIU Bo, ZHANG Guang-cai, DAI Jian-hua, ZHANG Hong-jun. Eigenvalues and Eigenfunctions of a Stadium-Shaped Quantum Dot Subjected to a Perpendicular Magnetic Field [J]. Chin. Phys. Lett., 1998, 15(9): 628-630.

Catalog

    Article views (295) PDF downloads (391) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return