Ideal Spin Hydrodynamics from the Wigner Function Approach
-
Abstract
Based on the Wigner function in local equilibrium, we derive hydrodynamical quantities for a system of polarized spin-1/2 particles: the particle number current density, the energy-momentum tensor, the spin tensor, and the dipole moment tensor. Compared with ideal hydrodynamics without spin, additional terms at the first and second orders in the Knudsen number Kn and the average spin polarization \chi_s have been derived. The Wigner function can be expressed in terms of matrix-valued distributions, whose equilibrium forms are characterized by thermodynamical parameters in quantum statistics. The equations of motion for these parameters are derived by conservation laws at the leading and next-to-leading order Kn and \chi_s.
Article Text
-
-
-
About This Article
Cite this article:
Hao-Hao Peng, Jun-Jie Zhang, Xin-Li Sheng, Qun Wang. Ideal Spin Hydrodynamics from the Wigner Function Approach[J]. Chin. Phys. Lett., 2021, 38(11): 116701. DOI: 10.1088/0256-307X/38/11/116701
Hao-Hao Peng, Jun-Jie Zhang, Xin-Li Sheng, Qun Wang. Ideal Spin Hydrodynamics from the Wigner Function Approach[J]. Chin. Phys. Lett., 2021, 38(11): 116701. DOI: 10.1088/0256-307X/38/11/116701
|
Hao-Hao Peng, Jun-Jie Zhang, Xin-Li Sheng, Qun Wang. Ideal Spin Hydrodynamics from the Wigner Function Approach[J]. Chin. Phys. Lett., 2021, 38(11): 116701. DOI: 10.1088/0256-307X/38/11/116701
Hao-Hao Peng, Jun-Jie Zhang, Xin-Li Sheng, Qun Wang. Ideal Spin Hydrodynamics from the Wigner Function Approach[J]. Chin. Phys. Lett., 2021, 38(11): 116701. DOI: 10.1088/0256-307X/38/11/116701
|