Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe2 Films
-
Abstract
Understanding the interplay between superconductivity and charge-density wave (CDW) in NbSe2 is vital for both fundamental physics and future device applications. Here, combining scanning tunneling microscopy, angle-resolved photoemission spectroscopy and Raman spectroscopy, we study the CDW phase in the monolayer NbSe2 films grown on various substrates of bilayer graphene (BLG), SrTiO3(111), and Al2O3(0001). It is found that the two stable CDW states of monolayer NbSe2 can coexist on NbSe2/BLG surface at liquid-nitrogen temperature. For the NbSe2/SrTiO3(111) sample, the unidirectional CDW regions own the kinks at ±41 meV and a wider gap at 4.2 K. It is revealed that the charge transfer from the substrates to the grown films will influence the configurations of the Fermi surface, and induce a 130 meV lift-up of the Fermi level with a shrink of the Fermi pockets in NbSe2/SrTiO3(111) compared with the NbSe2/BLG. Combining the temperature-dependent Raman experiments, we suggest that the electron-phonon coupling in monolayer NbSe2 dominates its CDW phase transition. -
-
References
[1] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, and Kis A 2017 Nat. Rev. Mater. 2 17033 doi: 10.1038/natrevmats.2017.33[2] Barhoumi M, Lazaar K, and Said M 2018 Physica E 104 155 doi: 10.1016/j.physe.2018.07.030[3] Chhowalla M, Voiry D, Yang J, Shin H S, and Loh K P 2015 MRS Bull. 40 585 doi: 10.1557/mrs.2015.142[4] Datta I, Chae S H, Bhatt G R, Tadayon M A, Li B, Yu Y, Park C, Park J, Cao L, Basov D et al.. 2020 Nat. Photon. 14 256 doi: 10.1038/s41566-020-0590-4[5] Mak K F and Shan J 2016 Nat. Photon. 10 216 doi: 10.1038/nphoton.2015.282[6] Ponraj J S, Xu Z Q, Dhanabalan S C, Mu H, Wang Y, Yuan J, Li P, Thakur S, Ashrafi M, Mccoubrey K et al.. 2016 Nanotechnology 27 462001 doi: 10.1088/0957-4484/27/46/462001[7] Li X and Wu X 2016 Wiley Interdiscip. Rev.: Comput. Mol. Sci. 6 441 doi: 10.1002/wcms.1259[8] Feng Y P, Shen L, Yang M, Wang A, Zeng M, Wu Q, Chintalapati S, and Chang C R 2017 Wiley Interdiscip. Rev.: Comput. Mol. Sci. 7 e1313 doi: 10.1002/wcms.1313[9] Zhu X, Cao Y, Zhang J, Plummer E, and Guo J 2015 Proc. Natl. Acad. Sci. USA 112 2367 doi: 10.1073/pnas.1424791112[10] Boubeche M, Yu J, Chushan L, Huichao W, Zeng L, He Y, Wang X, Su W, Wang M, Yao D X et al.. 2021 Chin. Phys. Lett. 38 037401 doi: 10.1088/0256-307X/38/3/037401[11] Borisenko S, Kordyuk A, Zabolotnyy V, Inosov D, Evtushinsky D, Büchner B, Yaresko A, Varykhalov A, Follath R, Eberhardt W et al.. 2009 Phys. Rev. Lett. 102 166402 doi: 10.1103/PhysRevLett.102.166402[12] Xi X, Zhao L, Wang Z, Berger H, Forró L, Shan J, and Mak K F 2015 Nat. Nanotechnol. 10 765 doi: 10.1038/nnano.2015.143[13] Peierls R E and Roberts L D 1956 Phys. Today 9 29 doi: 10.1063/1.3059963[14] Boriack M and Overhauser A 1977 Phys. Rev. B 15 2847 doi: 10.1103/PhysRevB.15.2847[15] Pouget J P 2016 C. R. Phys. 17 332 doi: 10.1016/j.crhy.2015.11.008[16] Choi J H and Cho J H 2006 J. Am. Chem. Soc. 128 11340 doi: 10.1021/ja063226w[17] Weber F, Rosenkranz S, Castellan J P, Osborn R, Hott R, Heid R, Bohnen K P, Egami T, Said A, and Reznik D 2011 Phys. Rev. Lett. 107 107403 doi: 10.1103/PhysRevLett.107.107403[18] Divilov S, Wan W, Dreher P, Bölen E, Sánchez-Portal D, Ugeda M M, and Ynduráin F 2021 J. Phys.: Condens. Matter 33 295804 doi: 10.1088/1361-648X/ac00da[19] Hu T, Bao H, Liu S, Liu X, Ma D, Ma F, and Xu K 2017 Carbon 120 219 doi: 10.1016/j.carbon.2017.05.046[20] Chen W, Xie X, Zong J, Chen T, Lin D, Yu F, Jin S, Zhou L, Zou J, Sun J et al.. 2019 Sci. Rep. 9 2685 doi: 10.1038/s41598-019-39238-7[21] Xie X, Ding Y, Zong J, Chen W, Zou J, Zhang H, Wang C, and Zhang Y 2020 Appl. Phys. Lett. 116 193101 doi: 10.1063/1.5144694[22] Guster B, Rubio-Verdú C, Robles R, Zaldı́var J, Dreher P, Pruneda M, Silva-Guillén J, Choi D J, Pascual J I, Ugeda M M et al.. 2019 Nano Lett. 19 3027 doi: 10.1021/acs.nanolett.9b00268[23] Gye G, Oh E, and Yeom H W 2019 Phys. Rev. Lett. 122 016403 doi: 10.1103/PhysRevLett.122.016403[24] Chen W, Hu M, Zong J, Xie X, Meng Q, Yu F, Wang L, Ren W, Chen A, Liu G et al.. 2021 Adv. Mater. 33 2004930 doi: 10.1002/adma.202004930[25] Soumyanarayanan A, Yee M M, He Y, Van Wezel J, Rahn D J, Rossnagel K, Hudson E, Norman M R, and Hoffman J E 2013 Proc. Natl. Acad. Sci. USA 110 1623 doi: 10.1073/pnas.1211387110[26] Flicker F and Van Wezel J 2015 Nat. Commun. 6 7034 doi: 10.1038/ncomms8034[27] Rossnagel K, Seifarth O, Kipp L, Skibowski M, Voß D, Krüger P, Mazur A, and Pollmann J 2001 Phys. Rev. B 64 235119 doi: 10.1103/PhysRevB.64.235119[28] Johannes M, Mazin I, and Howells C 2006 Phys. Rev. B 73 205102 doi: 10.1103/PhysRevB.73.205102[29] Wilson J, Di Salvo F, and Mahajan S 1974 Phys. Rev. Lett. 32 882 doi: 10.1103/PhysRevLett.32.882[30] Feng Y, Wang J, Jaramillo R, Van Wezel J, Haravifard S, Srajer G, Liu Y, Xu Z A, Littlewood P, and Rosenbaum T 2012 Proc. Natl. Acad. Sci. USA 109 7224 doi: 10.1073/pnas.1202434109[31] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z et al.. 2016 Nat. Phys. 12 92 doi: 10.1038/nphys3527[32] Yokoya T, Kiss T, Chainani A, Shin S, Nohara M, and Takagi H 2001 Science 294 2518 doi: 10.1126/science.1065068[33] Weber F, Hott R, Heid R, Lev L, Caputo M, Schmitt T, and Strocov V 2018 Phys. Rev. B 97 235122 doi: 10.1103/PhysRevB.97.235122[34] Burton J, Sun L, Pophristic M, Lukacs S, Long F, Feng Z, and Ferguson I 1998 J. Appl. Phys. 84 6268 doi: 10.1063/1.368947[35] Brun C, Cren T, and Roditchev D 2017 Supercond. Sci. Technol. 30 013003 doi: 10.1088/0953-2048/30/1/013003[36] Wu Q, Zhou H, Wu Y, Hu L, Ni S, Tian Y, Sun F, Zhou F, Dong X, Zhao Z et al.. 2020 Chin. Phys. Lett. 37 097802 doi: 10.1088/0256-307X/37/9/097802 -
Related Articles
[1] LUO Wen-Yu, YANG Chun-Mei, ZHANG Ren-He. Generalized Coupled-Mode Formulation for Sound Propagation in Range-Dependent Waveguides [J]. Chin. Phys. Lett., 2012, 29(1): 014302. doi: 10.1088/0256-307X/29/1/014302 [2] LUO Wen-Yu, SCHMIDT Henrik. A Spectral Coupled-Mode Formulation for Sound Propagation around Axisymmetric Seamounts [J]. Chin. Phys. Lett., 2010, 27(9): 094304. doi: 10.1088/0256-307X/27/9/094304 [3] ZHANG Yong-Sheng, GUO Guang-Can. Quantum Statistical Theory of Polarization Mode Dispersion [J]. Chin. Phys. Lett., 2006, 23(8): 2129-2131. [4] PAN Hao, YANG Wen-Tao. Fracture Criterion for Fracture Mechanics of Magnets [J]. Chin. Phys. Lett., 2003, 20(6): 855-857. [5] FAN Hongyi, JIANG Nian-Quan. New Three-Mode Einstein-Podolsky-Rosen Entangled State Representation and Its Application in Squeezing Theory [J]. Chin. Phys. Lett., 2002, 19(10): 1403-1406. [6] XING Zheng, WANG Zi-Xing, CHEN Xing-qu, XU Jin-zhang. A Criterion of Superdeformed Triaxial Shape [J]. Chin. Phys. Lett., 1999, 16(3): 172-174. [7] PANG Xiao-feng. Variational Approach to One-Dimensional Electrons Non- Adiabatically Coupled to Phonons [J]. Chin. Phys. Lett., 1999, 16(2): 129-131. [8] DING Zhen-feng, REN Zhao-xing. Criterion of Anisotropic Modes and Rejection Band in a Waveguide Filled with Cold Magnetoactive Plasma [J]. Chin. Phys. Lett., 1997, 14(5): 364-366. [9] NAN Cewen. A General Theory of Coupled Linear-Response of Inhomogeneous Media [J]. Chin. Phys. Lett., 1995, 12(3): 183-185. [10] Z. Wang, C. Wu, X. Sun. A CRITERION FOR TWO KINDS OF PEIERLS TRANSITIONS [J]. Chin. Phys. Lett., 1985, 2(3): 141-144.