Processing math: 100%

Charge Density Wave and Electron-Phonon Interaction in Epitaxial Monolayer NbSe2 Films

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 11774154, 11790311, and 12004172), the National Key Research and Development Program of China (Grant No. 2018YFA0306800), the Fundamental Research Funds for the Central Universities (Grant No. 0204-14380186), the Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 2020Z172), the Program for High-Level Entrepreneurial and Innovative Talents Introduction of Jiangsu Province, and the Program B for Outstanding Ph.D. Candidates of Nanjing University.
  • Received Date: June 24, 2021
  • Published Date: September 30, 2021
  • Understanding the interplay between superconductivity and charge-density wave (CDW) in NbSe2 is vital for both fundamental physics and future device applications. Here, combining scanning tunneling microscopy, angle-resolved photoemission spectroscopy and Raman spectroscopy, we study the CDW phase in the monolayer NbSe2 films grown on various substrates of bilayer graphene (BLG), SrTiO3(111), and Al2O3(0001). It is found that the two stable CDW states of monolayer NbSe2 can coexist on NbSe2/BLG surface at liquid-nitrogen temperature. For the NbSe2/SrTiO3(111) sample, the unidirectional CDW regions own the kinks at ±41 meV and a wider gap at 4.2 K. It is revealed that the charge transfer from the substrates to the grown films will influence the configurations of the Fermi surface, and induce a 130 meV lift-up of the Fermi level with a shrink of the Fermi pockets in NbSe2/SrTiO3(111) compared with the NbSe2/BLG. Combining the temperature-dependent Raman experiments, we suggest that the electron-phonon coupling in monolayer NbSe2 dominates its CDW phase transition.
  • Article Text

  • [1]
    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, and Kis A 2017 Nat. Rev. Mater. 2 17033 doi: 10.1038/natrevmats.2017.33

    CrossRef Google Scholar

    [2]
    Barhoumi M, Lazaar K, and Said M 2018 Physica E 104 155 doi: 10.1016/j.physe.2018.07.030

    CrossRef Google Scholar

    [3]
    Chhowalla M, Voiry D, Yang J, Shin H S, and Loh K P 2015 MRS Bull. 40 585 doi: 10.1557/mrs.2015.142

    CrossRef Google Scholar

    [4]
    Datta I, Chae S H, Bhatt G R, Tadayon M A, Li B, Yu Y, Park C, Park J, Cao L, Basov D et al.. 2020 Nat. Photon. 14 256 doi: 10.1038/s41566-020-0590-4

    CrossRef Google Scholar

    [5]
    Mak K F and Shan J 2016 Nat. Photon. 10 216 doi: 10.1038/nphoton.2015.282

    CrossRef Google Scholar

    [6]
    Ponraj J S, Xu Z Q, Dhanabalan S C, Mu H, Wang Y, Yuan J, Li P, Thakur S, Ashrafi M, Mccoubrey K et al.. 2016 Nanotechnology 27 462001 doi: 10.1088/0957-4484/27/46/462001

    CrossRef Google Scholar

    [7]
    Li X and Wu X 2016 Wiley Interdiscip. Rev.: Comput. Mol. Sci. 6 441 doi: 10.1002/wcms.1259

    CrossRef Google Scholar

    [8]
    Feng Y P, Shen L, Yang M, Wang A, Zeng M, Wu Q, Chintalapati S, and Chang C R 2017 Wiley Interdiscip. Rev.: Comput. Mol. Sci. 7 e1313 doi: 10.1002/wcms.1313

    CrossRef Google Scholar

    [9]
    Zhu X, Cao Y, Zhang J, Plummer E, and Guo J 2015 Proc. Natl. Acad. Sci. USA 112 2367 doi: 10.1073/pnas.1424791112

    CrossRef Google Scholar

    [10]
    Boubeche M, Yu J, Chushan L, Huichao W, Zeng L, He Y, Wang X, Su W, Wang M, Yao D X et al.. 2021 Chin. Phys. Lett. 38 037401 doi: 10.1088/0256-307X/38/3/037401

    CrossRef Google Scholar

    [11]
    Borisenko S, Kordyuk A, Zabolotnyy V, Inosov D, Evtushinsky D, Büchner B, Yaresko A, Varykhalov A, Follath R, Eberhardt W et al.. 2009 Phys. Rev. Lett. 102 166402 doi: 10.1103/PhysRevLett.102.166402

    CrossRef Google Scholar

    [12]
    Xi X, Zhao L, Wang Z, Berger H, Forró L, Shan J, and Mak K F 2015 Nat. Nanotechnol. 10 765 doi: 10.1038/nnano.2015.143

    CrossRef Google Scholar

    [13]
    Peierls R E and Roberts L D 1956 Phys. Today 9 29 doi: 10.1063/1.3059963

    CrossRef Google Scholar

    [14]
    Boriack M and Overhauser A 1977 Phys. Rev. B 15 2847 doi: 10.1103/PhysRevB.15.2847

    CrossRef Google Scholar

    [15]
    Pouget J P 2016 C. R. Phys. 17 332 doi: 10.1016/j.crhy.2015.11.008

    CrossRef Google Scholar

    [16]
    Choi J H and Cho J H 2006 J. Am. Chem. Soc. 128 11340 doi: 10.1021/ja063226w

    CrossRef Google Scholar

    [17]
    Weber F, Rosenkranz S, Castellan J P, Osborn R, Hott R, Heid R, Bohnen K P, Egami T, Said A, and Reznik D 2011 Phys. Rev. Lett. 107 107403 doi: 10.1103/PhysRevLett.107.107403

    CrossRef Google Scholar

    [18]
    Divilov S, Wan W, Dreher P, Bölen E, Sánchez-Portal D, Ugeda M M, and Ynduráin F 2021 J. Phys.: Condens. Matter 33 295804 doi: 10.1088/1361-648X/ac00da

    CrossRef Google Scholar

    [19]
    Hu T, Bao H, Liu S, Liu X, Ma D, Ma F, and Xu K 2017 Carbon 120 219 doi: 10.1016/j.carbon.2017.05.046

    CrossRef Google Scholar

    [20]
    Chen W, Xie X, Zong J, Chen T, Lin D, Yu F, Jin S, Zhou L, Zou J, Sun J et al.. 2019 Sci. Rep. 9 2685 doi: 10.1038/s41598-019-39238-7

    CrossRef Google Scholar

    [21]
    Xie X, Ding Y, Zong J, Chen W, Zou J, Zhang H, Wang C, and Zhang Y 2020 Appl. Phys. Lett. 116 193101 doi: 10.1063/1.5144694

    CrossRef Google Scholar

    [22]
    Guster B, Rubio-Verdú C, Robles R, Zaldı́var J, Dreher P, Pruneda M, Silva-Guillén J, Choi D J, Pascual J I, Ugeda M M et al.. 2019 Nano Lett. 19 3027 doi: 10.1021/acs.nanolett.9b00268

    CrossRef Google Scholar

    [23]
    Gye G, Oh E, and Yeom H W 2019 Phys. Rev. Lett. 122 016403 doi: 10.1103/PhysRevLett.122.016403

    CrossRef Google Scholar

    [24]
    Chen W, Hu M, Zong J, Xie X, Meng Q, Yu F, Wang L, Ren W, Chen A, Liu G et al.. 2021 Adv. Mater. 33 2004930 doi: 10.1002/adma.202004930

    CrossRef Google Scholar

    [25]
    Soumyanarayanan A, Yee M M, He Y, Van Wezel J, Rahn D J, Rossnagel K, Hudson E, Norman M R, and Hoffman J E 2013 Proc. Natl. Acad. Sci. USA 110 1623 doi: 10.1073/pnas.1211387110

    CrossRef Google Scholar

    [26]
    Flicker F and Van Wezel J 2015 Nat. Commun. 6 7034 doi: 10.1038/ncomms8034

    CrossRef Google Scholar

    [27]
    Rossnagel K, Seifarth O, Kipp L, Skibowski M, Voß D, Krüger P, Mazur A, and Pollmann J 2001 Phys. Rev. B 64 235119 doi: 10.1103/PhysRevB.64.235119

    CrossRef Google Scholar

    [28]
    Johannes M, Mazin I, and Howells C 2006 Phys. Rev. B 73 205102 doi: 10.1103/PhysRevB.73.205102

    CrossRef Google Scholar

    [29]
    Wilson J, Di Salvo F, and Mahajan S 1974 Phys. Rev. Lett. 32 882 doi: 10.1103/PhysRevLett.32.882

    CrossRef Google Scholar

    [30]
    Feng Y, Wang J, Jaramillo R, Van Wezel J, Haravifard S, Srajer G, Liu Y, Xu Z A, Littlewood P, and Rosenbaum T 2012 Proc. Natl. Acad. Sci. USA 109 7224 doi: 10.1073/pnas.1202434109

    CrossRef Google Scholar

    [31]
    Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H Z et al.. 2016 Nat. Phys. 12 92 doi: 10.1038/nphys3527

    CrossRef Google Scholar

    [32]
    Yokoya T, Kiss T, Chainani A, Shin S, Nohara M, and Takagi H 2001 Science 294 2518 doi: 10.1126/science.1065068

    CrossRef Google Scholar

    [33]
    Weber F, Hott R, Heid R, Lev L, Caputo M, Schmitt T, and Strocov V 2018 Phys. Rev. B 97 235122 doi: 10.1103/PhysRevB.97.235122

    CrossRef Google Scholar

    [34]
    Burton J, Sun L, Pophristic M, Lukacs S, Long F, Feng Z, and Ferguson I 1998 J. Appl. Phys. 84 6268 doi: 10.1063/1.368947

    CrossRef Google Scholar

    [35]
    Brun C, Cren T, and Roditchev D 2017 Supercond. Sci. Technol. 30 013003 doi: 10.1088/0953-2048/30/1/013003

    CrossRef Google Scholar

    [36]
    Wu Q, Zhou H, Wu Y, Hu L, Ni S, Tian Y, Sun F, Zhou F, Dong X, Zhao Z et al.. 2020 Chin. Phys. Lett. 37 097802 doi: 10.1088/0256-307X/37/9/097802

    CrossRef Google Scholar

  • Related Articles

    [1]LUO Wen-Yu, YANG Chun-Mei, ZHANG Ren-He. Generalized Coupled-Mode Formulation for Sound Propagation in Range-Dependent Waveguides [J]. Chin. Phys. Lett., 2012, 29(1): 014302. doi: 10.1088/0256-307X/29/1/014302
    [2]LUO Wen-Yu, SCHMIDT Henrik. A Spectral Coupled-Mode Formulation for Sound Propagation around Axisymmetric Seamounts [J]. Chin. Phys. Lett., 2010, 27(9): 094304. doi: 10.1088/0256-307X/27/9/094304
    [3]ZHANG Yong-Sheng, GUO Guang-Can. Quantum Statistical Theory of Polarization Mode Dispersion [J]. Chin. Phys. Lett., 2006, 23(8): 2129-2131.
    [4]PAN Hao, YANG Wen-Tao. Fracture Criterion for Fracture Mechanics of Magnets [J]. Chin. Phys. Lett., 2003, 20(6): 855-857.
    [5]FAN Hongyi, JIANG Nian-Quan. New Three-Mode Einstein-Podolsky-Rosen Entangled State Representation and Its Application in Squeezing Theory [J]. Chin. Phys. Lett., 2002, 19(10): 1403-1406.
    [6]XING Zheng, WANG Zi-Xing, CHEN Xing-qu, XU Jin-zhang. A Criterion of Superdeformed Triaxial Shape [J]. Chin. Phys. Lett., 1999, 16(3): 172-174.
    [7]PANG Xiao-feng. Variational Approach to One-Dimensional Electrons Non- Adiabatically Coupled to Phonons [J]. Chin. Phys. Lett., 1999, 16(2): 129-131.
    [8]DING Zhen-feng, REN Zhao-xing. Criterion of Anisotropic Modes and Rejection Band in a Waveguide Filled with Cold Magnetoactive Plasma [J]. Chin. Phys. Lett., 1997, 14(5): 364-366.
    [9]NAN Cewen. A General Theory of Coupled Linear-Response of Inhomogeneous Media [J]. Chin. Phys. Lett., 1995, 12(3): 183-185.
    [10]Z. Wang, C. Wu, X. Sun. A CRITERION FOR TWO KINDS OF PEIERLS TRANSITIONS [J]. Chin. Phys. Lett., 1985, 2(3): 141-144.

Catalog

    Article views (1411) PDF downloads (930) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return