Isotropic Thermal Cloaks with Thermal Manipulation Function

Funds: Supported by the National Natural Science Foundation of China (Grant No. 51406168).
  • Received Date: September 21, 2020
  • Published Date: December 31, 2020
  • By extending the conventional scattering canceling theory, we propose a new design method for thermal cloaks based on isotropic materials. When the objects are covered by the designed cloaks, they will not disturb the temperature profile in the background zone. In addition, if different inhomogeneity coefficients are selected in the thermal cloak design process, these cloaks can manipulate the temperature gradient of the objects, i.e., make the temperature gradients higher, lower, or equal to the thermal gradient in the background zone. Therefore, thermal transparency, heat concentration or heat shield effects can be realized under a unified framework.
  • Article Text

  • [1]
    Fan C Z, Gao Y and Huang J P 2008 Appl. Phys. Lett. 92 251907 doi: 10.1063/1.2951600

    CrossRef Google Scholar

    [2]
    Yang T Z, Huang L J, Chen F and Xu W K 2013 J. Phys. D 46 305102 doi: 10.1088/0022-3727/46/30/305102

    CrossRef Google Scholar

    [3]
    Dede E M, Nomura T, Schmalenberg P and Lee J S 2013 Appl. Phys. Lett. 103 63501 doi: 10.1063/1.4816775

    CrossRef Google Scholar

    [4]
    Guenneau S, Amra C and Veynante D 2012 Opt. Express 20 8207 doi: 10.1364/OE.20.008207

    CrossRef Google Scholar

    [5]
    Ye Z Q and Cao B Y 2016 Phys. Chem. Chem. Phys. 18 32952 doi: 10.1039/C6CP07098A

    CrossRef Google Scholar

    [6]
    Chen F and Lei D Y 2015 Sci. Rep. 5 11552 doi: 10.1038/srep11552

    CrossRef Google Scholar

    [7]
    Hu R, Wei X, Hu J and Luo X 2014 Sci. Rep. 4 3600 doi: 10.1038/srep03600

    CrossRef Google Scholar

    [8]
    Narayana S, Savo S and Sato Y 2013 Appl. Phys. Lett. 102 201904 doi: 10.1063/1.4807744

    CrossRef Google Scholar

    [9]
    Guenneau S and Amra C 2013 Opt. Express 21 6578 doi: 10.1364/OE.21.006578

    CrossRef Google Scholar

    [10]
    Vemuri K P, Canbazoglu F M and Bandaru P R 2014 Appl. Phys. Lett. 105 193904 doi: 10.1063/1.4901885

    CrossRef Google Scholar

    [11]
    Liu Y, Jiang W, He S and Ma Y 2014 Opt. Express 22 17006 doi: 10.1364/OE.22.017006

    CrossRef Google Scholar

    [12]
    Li Y, Shen X, Wu Z, Huang J, Chen Y, Ni Y and Huang J 2015 Phys. Rev. Lett. 115 195503 doi: 10.1103/PhysRevLett.115.195503

    CrossRef Google Scholar

    [13]
    Hu R, Zhou S, Li Y, Lei D, Luo X and Qiu C 2018 Adv. Mater. 30 1707237 doi: 10.1002/adma.201707237

    CrossRef Google Scholar

    [14]
    Hou Q, Zhao X, Meng T and Liu C 2016 Appl. Phys. Lett. 109 103506 doi: 10.1063/1.4962473

    CrossRef Google Scholar

    [15]
    Sun F and He S 2017 Sci. Rep. 7 40949 doi: 10.1038/srep40949

    CrossRef Google Scholar

    [16]
    Hu R, Huang S, Wang M, Luo X, Shiomi J and Qiu C W 2019 Adv. Mater. 31 1807849 doi: 10.1002/adma.201807849

    CrossRef Google Scholar

    [17]
    Kang S, Cha J, Seo K, Kim S, Cha Y, Lee H, Park J and Choi W 2019 Int. J. Heat Mass Transfer 130 469 doi: 10.1016/j.ijheatmasstransfer.2018.10.127

    CrossRef Google Scholar

    [18]
    Han T C, Yuan T, Li B W and Qiu C W 2013 Sci. Rep. 3 1593 doi: 10.1038/srep01593

    CrossRef Google Scholar

    [19]
    Hou Q, Yin J, Zhao X and Bi Y 2018 Phys. Lett. A 382 2382 doi: 10.1016/j.physleta.2018.05.052

    CrossRef Google Scholar

    [20]
    Han T, Bai X, Gao D, Thong J T L, Li B and Qiu C 2014 Phys. Rev. Lett. 112 54302 doi: 10.1103/PhysRevLett.112.054302

    CrossRef Google Scholar

    [21]
    Xu H, Shi X, Gao F, Sun H and Zhang B 2014 Phys. Rev. Lett. 112 54301 doi: 10.1103/PhysRevLett.112.054301

    CrossRef Google Scholar

    [22]
    Yang T, Bai X, Gao D, Wu L, Li B, Thong J T L and Qiu C 2015 Adv. Mater. 27 7752 doi: 10.1002/adma.201502513

    CrossRef Google Scholar

    [23]
    Xu G, Zhang H, Xie M and Jin Y 2017 AIP Adv. 7 105322 doi: 10.1063/1.4986984

    CrossRef Google Scholar

    [24]
    Hu R, Huang S, Wang M, Zhou L, Peng X and Luo X 2018 Phys. Rev. Appl. 10 054032 doi: 10.1103/PhysRevApplied.10.054032

    CrossRef Google Scholar

    [25]
    Wang R, Xu L, Ji Q and Huang J 2018 J. Appl. Phys. 123 115117 doi: 10.1063/1.5019306

    CrossRef Google Scholar

    [26]
    Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303 doi: 10.1103/PhysRevLett.108.214303

    CrossRef Google Scholar

    [27]
    He X and Wu L 2013 Phys. Rev. E 88 33201 doi: 10.1103/PhysRevE.88.033201

    CrossRef Google Scholar

    [28]
    Han T, Yang P, Li Y, Lei D, Li B, Hippalgaonkar K and Qiu C 2018 Adv. Mater. 30 1804019 doi: 10.1002/adma.201804019

    CrossRef Google Scholar

  • Related Articles

    [1]Shahid M. Ramay, Saadat A. Siddiqi, M. Sabieh Anwar, S. C. Shin. Effect of Temperature on Structural and Magnetic Properties of Laser Ablated Iron Oxide Deposited on Si(100) [J]. Chin. Phys. Lett., 2009, 26(11): 117504. doi: 10.1088/0256-307X/26/11/117504
    [2]XUE Gang, PENG Long, ZHANG Huai-Wu. Crystal Structure and Magnetic Properties of Sm2Fe17Nδ Thin Films Deposited on Si (100) Substrates [J]. Chin. Phys. Lett., 2009, 26(9): 097503. doi: 10.1088/0256-307X/26/9/097503
    [3]HE Meng, LIU Guo-Zhen, XIANG Wen-Feng, Lü Hui-Bin, JIN Kui-Juan, ZHOU Yue-Liang, YANG Guo-Zhen. Structure Stability of LaAlO3 Thin Films on Si Substrates [J]. Chin. Phys. Lett., 2007, 24(9): 2671-2674.
    [4]JING Shi-Wei, LIU Yi-Chun, LIANG Yu, MA Jian-Gang, LU You-Ming, SHEN De-Zhen, ZHANG Ji-Ying, FAN Xi-Wu, MU Ri-Xiang. Compositional and Structural Properties of TiO2-xNx Thin Films Deposited by Radio-Frequency Magnetron Sputtering [J]. Chin. Phys. Lett., 2006, 23(3): 682-685.
    [5]LU Li-Xia, TANG Qin-Xin, SHAO Chang-Lu, LIU Yi-Chun. Structure and Photoluminescence of Nano-ZnO Films Grown on a Si (100) Substrate by Oxygen- and Argon-Plasma-Assisted Thermal Evaporation of Metallic Zn [J]. Chin. Phys. Lett., 2005, 22(4): 998-1001.
    [6]CHEN Bin, YANG Hao, MIAO Jun, ZHAO Li, XU Bo, DONG Xiao-Li, CAO Li-Xin, QIU Xiang-Gang, ZHAO Bai-Ru. Structural and Electrical Characteristics of Pb(Zr0.53,Ti0.47)O3 Thin Films Deposited on Si (100) Substrates [J]. Chin. Phys. Lett., 2005, 22(3): 697-700.
    [7]HUANG Shi-Yong, ZHANG Li-De, LI Guang-Hai, DAI Zhen-Hong, ZHU Xiao-Guang, QU Feng-Qi, FU Sheng-Qi, ZHONG Yu-Rong, MIAO Y. Effect of Substrates on CuInSe2 Nanoparticle Thin Films by Radio Frequency Reactive Sputtering [J]. Chin. Phys. Lett., 2002, 19(8): 1199-1202.
    [8]ZHANG Guo-Bin, SHI Chao-Shu, HAN Zheng-Fu, SHI Jun-Yan, FU Zhu-Xi, M. Kirm, G. Zimmerer. Photoluminescent Properties of ZnO Films Deposited on Si Substrates [J]. Chin. Phys. Lett., 2001, 18(3): 441-442.
    [9]SHANG Nai-gui, FANG Rong-chuan, HANG Yin, LI Jin-qiu, HAN Si-jin, SHAO Qing-yi, CUI Jing-biao, XU Cun-yi. Investigation of Diamond Films Deposited on LaAIO3 Single Crystal Substrates by Hot Filament Chemical Vapor Deposition [J]. Chin. Phys. Lett., 1998, 15(2): 146-148.
    [10]ZHANG Ze-bo, LI Yin-an, XIE Si-shen, YANG Guo-zhen. Polycrystalline β-C3N4 Thin Films Deposited on Single-Crystal KCl(100) Using rf Sputtering [J]. Chin. Phys. Lett., 1996, 13(1): 69-72.

Catalog

    Article views (428) PDF downloads (352) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return