Express Letter

Zirconium Aided Epitaxial Growth of InxSey on InP(111) Substrates

Funds: Supported by the National Natural Science Foundation of China (Grant No. 11874233).
  • Received Date: June 19, 2020
  • Published Date: July 31, 2020
  • Layered material indium selenide (InxSey) is a promising candidate for building next-generation electronic and photonic devices. We report a zirconium aided MBE growth of this van der Waals material. When co-depositing zirconium and selenium onto an indium phosphide substrate with a substrate temperature of 400℃ at a constant zirconium flux rate of 0.01 ML/min, the polymorphic InxSey layer emerges on top of the insulating ZrSe2 layer. Different archetypes, such as InSe, α-In2Se3 and β-In2Se3, are found in the InxSey layers. A negative magnetoresistance of 40% at 2 K under 9 T magnetic field is observed. Such an InxSey/ZrSe2 heterostructure with good lattice-matching may serve as a candidate for device applications.
  • Article Text

  • [1]
    Fiori G, Bonaccorso F, Iannaccone G et al.. 2014 Nat. Nanotechnol. 9 768 doi: 10.1038/nnano.2014.207

    CrossRef Google Scholar

    [2]
    Marks T J and Hersam M C 2015 Nature 520 631 doi: 10.1038/520631a

    CrossRef Google Scholar

    [3]
    Franklin A D 2015 Science 349 aab2750 doi: 10.1126/science.aab2750

    CrossRef Google Scholar

    [4]
    Butler S Z, Hollen S M, Cao L et al.. 2013 ACS Nano 7 2898 doi: 10.1021/nn400280c

    CrossRef Google Scholar

    [5]
    Zhao M, Ye Y, Han Y et al.. 2016 Nat. Nanotechnol. 11 954 doi: 10.1038/nnano.2016.115

    CrossRef Google Scholar

    [6]
    Novoselov K S, Geim A K, Morozov S V et al.. 2004 Science 306 666 doi: 10.1126/science.1102896

    CrossRef Google Scholar

    [7]
    Li L, Yu Y, Ye G J et al.. 2014 Nat. Nanotechnol. 9 372 doi: 10.1038/nnano.2014.35

    CrossRef Google Scholar

    [8]
    Wang Q H, Kalantar-Zadeh K, Kis A et al.. 2012 Nat. Nanotechnol. 7 699 doi: 10.1038/nnano.2012.193

    CrossRef Google Scholar

    [9]
    Chhowalla M, Shin H S, Eda G et al.. 2013 Nat. Chem. 5 263 doi: 10.1038/nchem.1589

    CrossRef Google Scholar

    [10]
    Splendiani A, Sun L, Zhang Y et al.. 2010 Nano Lett. 10 1271 doi: 10.1021/nl903868w

    CrossRef Google Scholar

    [11]
    Radisavljevic B, Radenovic A, Brivio J et al.. 2011 Nat. Nanotechnol. 6 147 doi: 10.1038/nnano.2010.279

    CrossRef Google Scholar

    [12]
    Li M Y, Shi Y, Cheng C C et al.. 2015 Science 349 524 doi: 10.1126/science.aab4097

    CrossRef Google Scholar

    [13]
    Hu P, Wen Z, Wang L et al.. 2012 ACS Nano 6 5988 doi: 10.1021/nn300889c

    CrossRef Google Scholar

    [14]
    Late D J, Liu B T, Luo J et al.. 2012 Adv. Mater. 24 3549 doi: 10.1002/adma.201201361

    CrossRef Google Scholar

    [15]
    Lei S, Ge L, Liu Z et al.. 2013 Nano Lett. 13 2777 doi: 10.1021/nl4010089

    CrossRef Google Scholar

    [16]
    Huang W, Gan L, Li H et al.. 2016 CrystEngComm 18 3968 doi: 10.1039/C5CE01986A

    CrossRef Google Scholar

    [17]
    Feng W, Zheng W, Cao W et al.. 2014 Adv. Mater. 26 6587 doi: 10.1002/adma.201402427

    CrossRef Google Scholar

    [18]
    Tamalampudi S R, Lu Y, Kumar U R et al.. 2014 Nano Lett. 14 2800 doi: 10.1021/nl500817g

    CrossRef Google Scholar

    [19]
    Jacobsgedrim R B, Shanmugam M, Jain N et al.. 2014 ACS Nano 8 514 doi: 10.1021/nn405037s

    CrossRef Google Scholar

    [20]
    Bandurin D A, Tyurnina A V, Yu G et al.. 2017 Nat. Nanotechnol. 12 223 doi: 10.1038/nnano.2016.242

    CrossRef Google Scholar

    [21]
    Mudd G W, Svatek S A, Ren T et al.. 2013 Adv. Mater. 25 5714 doi: 10.1002/adma.201302616

    CrossRef Google Scholar

    [22]
    Choi M S, Cheong B, Ra C H et al.. 2017 Adv. Mater. 29 1703568 doi: 10.1002/adma.201703568

    CrossRef Google Scholar

    [23]
    Cui C, Hu W, Yan X et al.. 2018 Nano Lett. 18 1253 doi: 10.1021/acs.nanolett.7b04852

    CrossRef Google Scholar

    [24]
    Poh S M, Tan S J, Wang H et al.. 2018 Nano Lett. 18 6340 doi: 10.1021/acs.nanolett.8b02688

    CrossRef Google Scholar

    [25]
    Kibirev I A, Matetskiy A V, Zotov A V et al.. 2018 Appl. Phys. Lett. 112 191602 doi: 10.1063/1.5027023

    CrossRef Google Scholar

    [26]
    Si M W, Saha A K, Gao S J et al.. 2019 Nat. Electron. 2 580 doi: 10.1038/s41928-019-0338-7

    CrossRef Google Scholar

    [27]
    Popović S, Tonejc A, Gržeta-Plenković B et al.. 1979 J. Appl. Crystallogr. 12 416 doi: 10.1107/S0021889879012863

    CrossRef Google Scholar

    [28]
    Manolikas C 1988 J. Solid State Chem. 74 319 doi: 10.1016/0022-45968890361-1

    CrossRef Google Scholar

    [29]
    Osamura K, Murakami Y and Tomile Y 1966 J. Phys. Soc. Jpn. 21 1848 doi: 10.1143/JPSJ.21.1848

    CrossRef Google Scholar

    [30]
    Miyazawa H and Sugaike S 1957 J. Phys. Soc. Jpn. 12 312 doi: 10.1143/JPSJ.12.312

    CrossRef Google Scholar

    [31]
    Čelustka B and Bidjin D 1971 Phys. Status Solidi A 6 301 doi: 10.1002/pssa.2210060134

    CrossRef Google Scholar

    [32]
    Kupers M, Konze P M, Meledin A et al.. 2018 Inorg. Chem. 57 11775 doi: 10.1021/acs.inorgchem.8b01950

    CrossRef Google Scholar

    [33]
    De Blasi C, Micocci G, Mongelli S et al.. 1982 J. Cryst. Growth 57 482 doi: 10.1016/0022-02488290062-8

    CrossRef Google Scholar

    [34]
    Lin M, Wu D, Zhou Y et al.. 2013 J. Am. Chem. Soc. 135 13274 doi: 10.1021/ja406351u

    CrossRef Google Scholar

    [35]
    Ohtsuka T, Nakanishi K, Okamoto T et al.. 2001 Jpn. J. Appl. Phys. 40 509 doi: 10.1143/JJAP.40.509

    CrossRef Google Scholar

    [36]
    Emery J Y, Brahimostmane L, Hirlimann C et al.. 1992 J. Appl. Phys. 71 3256 doi: 10.1063/1.350972

    CrossRef Google Scholar

    [37]
    Hayashi T, Ueno K, Saiki K et al.. 2000 J. Cryst. Growth 219 115 doi: 10.1016/S0022-02480000627-8

    CrossRef Google Scholar

    [38]
    Sanchez-Royo J F, Segura A, Lang O et al.. 2001 J. Appl. Phys. 90 2818 doi: 10.1063/1.1389479

    CrossRef Google Scholar

    [39]
    Balakrishnan N, Steer E D, Smith E F et al.. 2018 2D Mater. 5 035026 doi: 10.1088/2053-1583/aac479

    CrossRef Google Scholar

    [40]
    Amokrane A, Proix F, Monkad S E et al.. 1999 J. Phys.: Condens. Matter 11 4303 doi: 10.1088/0953-8984/11/22/302

    CrossRef Google Scholar

    [41]
    Zhou J D, Zeng Q S, Lv D H et al.. 2015 Nano Lett. 15 6400 doi: 10.1021/acs.nanolett.5b01590

    CrossRef Google Scholar

    [42]
    Yang Z B, Jie W J, Mak C H et al.. 2017 ACS Nano 11 4225 doi: 10.1021/acsnano.7b01168

    CrossRef Google Scholar

    [43]
    Zheng W, Xie T, Zhou Y et al.. 2015 Nat. Commun. 6 6972 doi: 10.1038/ncomms7972

    CrossRef Google Scholar

    [44]
    Zhou S, Tao X, Gu Y et al.. 2016 J. Phys. Chem. C 120 4753 doi: 10.1021/acs.jpcc.5b10905

    CrossRef Google Scholar

    [45]
    Okamoto T, Nakada Y, Aoki T et al.. 2006 Phys. Status Solidi C 3 2796 doi: 10.1002/pssc.200669524

    CrossRef Google Scholar

    [46]
    Massidda S, Continenza A, Freeman A J et al.. 1990 Phys. Rev. B 41 12079 doi: 10.1103/PhysRevB.41.12079

    CrossRef Google Scholar

    [47]
    Whitehouse C R and Balchin A A 1978 Phys. Status Solidi A 47 K173 doi: 10.1002/pssa.2210470269

    CrossRef Google Scholar

    [48]
    Balluffi R W and Bkakely J M 1975 Thin Solid Films 25 363 doi: 10.1016/0040-60907590056-5

    CrossRef Google Scholar

    [49]
    Mleczko M J, Zhang C, Lee H R et al.. 2017 Sci. Adv. 3 e1700481 doi: 10.1126/sciadv.1700481

    CrossRef Google Scholar

    [50]
    Pauw L J 1958 Philips Res. Rep. 13 1

    Google Scholar

    [51]
    Hikami S, Larkin A I and Nagaoka Y 1980 Prog. Theor. Phys. 63 707 doi: 10.1143/PTP.63.707

    CrossRef Google Scholar

    [52]
    Dmitriev A I, Kovalyuk Z D, Lazorenko V I et al.. 1990 Phys. Status Solidi B 162 213 doi: 10.1002/pssb.2221620118

    CrossRef Google Scholar

    [53]
    Romeo N 1974 Phys. Status Solidi A 26 K187 doi: 10.1002/pssa.2210260265

    CrossRef Google Scholar

  • Related Articles

    [1]SUN Bing, CHANG Hu-Dong, LU Li, LIU Hong-Gang, WU De-Xin. High-Quality Single Crystalline Ge(111) Growth on Si(111) Substrates by Solid Phase Epitaxy [J]. Chin. Phys. Lett., 2012, 29(3): 036102. doi: 10.1088/0256-307X/29/3/036102
    [2]SANG Ling, WANG Jun, SHI Kai, WEI Hong-Yuan, JIAO Chun-Mei, LIU Xiang-Lin, YANG Shao-Yan, ZHU Qin-Sheng, WANG Zhan-Guo. The Growth of Semi-Polar ZnO (1011) on Si (111) Substrates Using a Methanol Oxidant by Metalorganic Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2012, 29(1): 018101. doi: 10.1088/0256-307X/29/1/018101
    [3]WEI Meng, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, PAN Xu, HOU Qi-Feng, WANG Zhan-Guo. Growth of 2 µm Crack-Free GaN on Si(111) Substrates by Metal Organic Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2011, 28(4): 048102. doi: 10.1088/0256-307X/28/4/048102
    [4]XU Run, TANG Min-Yan, ZHU Yan-Yan, WANG Lin-Jun. Epitaxial Growth of Si(111)/Er2O3 (111) Structure on Si(111) by Molecular Beam Epitaxy [J]. Chin. Phys. Lett., 2011, 28(3): 036801. doi: 10.1088/0256-307X/28/3/036801
    [5]KANG Lin, GAO Ju, XU Hua-Rong, ZHAO Shao-Qi, CHEN Hong, WU Pei-Heng. Influences of Pressure and Substrate Temperature on Epitaxial Growth of γ-Mg2SiO4 Thin Films on Si Substrates [J]. Chin. Phys. Lett., 2007, 24(12): 3528-3531.
    [6]LIU Yan-Fang, LIU Jin-Feng, XU Peng-Shou, PAN Hai-Bin. X-Ray Photoelectron Spectroscopy and Reflection High Energy Electron Diffraction of Epitaxial Growth SiC on Si(100) Using C60 and Si [J]. Chin. Phys. Lett., 2007, 24(7): 2022-2024.
    [7]XUE Xian-Ying, WANG Yu-Zhu, JIA Quan-Jie, WANG Yong, CHEN Yu, JIANG Xiao-Ming, ZHU Yan-Yan, JIANG Zui-Min. Microstructure of Epitaxial Er2O3 Thin Film on Oxidized Si (111) Substrate [J]. Chin. Phys. Lett., 2007, 24(6): 1649-2652.
    [8]LI Liang, ZHANG Rong, XIE Zi-Li, ZHANG Yu, XIU Xiang-Qian, LIU Bin, CHEN Lin, YU Hui-Qiang, HAN Ping, GONG Hai-Mei, ZHENG You-Dou. MOCVD Growth and Characterization of Epitaxial AlxGa1-x N Films [J]. Chin. Phys. Lett., 2007, 24(5): 1393-1396.
    [9]GAO Fei, LI Guo-Hua, ZHANG Jian-Hui, QIN Fu-Guang, YAO Zhen-Yu, LIU Zhi-Kai, WANG Zhan-Guo, LIN Lan-Ying. Growth and Photoluminescence of Epitaxial CeO2 Film on Si (111) Substrate [J]. Chin. Phys. Lett., 2001, 18(3): 443-444.
    [10]HU Wen-fei, LI Lin, WANG Tian-sheng, LIU Wei, TAO Hong-jie, TIAN Yong-jun, CHEN Ying-fei. Atomic Force Microscopy of Surface Reconstructed SrTiO3 Vicinal Substrates for Epitaxial Growth of YBa2Cu3O7-δ Thin Films [J]. Chin. Phys. Lett., 1999, 16(11): 853-855.
  • Other Related Supplements

Catalog

    Article views (765) PDF downloads (551) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return