de Haas–van Alphen Quantum Oscillations in BaSn3 Superconductor with Multiple Dirac Fermions

    Show all affliationsShow less
Funds: Supported by the National Natural Science Foundation of China (Grant No. 11874264), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA18000000), the Starting Grant of ShanghaiTech University, the Shenzhen Peacock Team Plan (Grant No. KQTD20170809110344233), the Bureau of Industry and Information Technology of Shenzhen through the Graphene Manufacturing Innovation Center (Grant No. 201901161514), the Key Scientific Research Projects of Higher Institutions in Henan Province (19A140018), and Analytical Instrumentation Center, SPST, ShanghaiTech University (Grant No. SPST-AIC10112914).
  • Received Date: May 25, 2020
  • Published Date: July 31, 2020
  • Characterization of Fermi surface of the BaSn3 superconductor (Tc4.4 K) by de Haas–van Alphen (dHvA) effect measurement reveals its non-trivial topological properties. Analysis of non-zero Berry phase is supported by the ab initio calculations, which reveals a type-II Dirac point setting and tilting along the high symmetric KH line of the Brillouin zone, about 0.13 eV above the Fermi level, and other two type-I Dirac points on the high symmetric ΓA direction, but slightly far below the Fermi level. The results demonstrate BaSn3 as an excellent example hosting multiple Dirac fermions and an outstanding platform for studying the interplay between nontrivial topological states and superconductivity.
  • Article Text

  • [1]
    Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405 doi: 10.1103/PhysRevLett.108.140405

    CrossRef Google Scholar

    [2]
    Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320 doi: 10.1103/PhysRevB.85.195320

    CrossRef Google Scholar

    [3]
    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864 doi: 10.1126/science.1245085

    CrossRef Google Scholar

    [4]
    Lv B Q, Weng H M, Fu B B, Wang X P, Miao H, Ma J, Richard P, Huang X C, Zhao L X, Chen G F, Fang Z, Dai X, Qian T and Ding H 2015 Phys. Rev. X 5 031013 doi: 10.1103/PhysRevX.5.031013

    CrossRef Google Scholar

    [5]
    Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029 doi: 10.1103/PhysRevX.5.011029

    CrossRef Google Scholar

    [6]
    Yang L X, Liu Z K, Sun Y, Peng H, Yang H F, Zhang T, Zhou B, Zhang Y, Guo Y F, Rahn M, Prabhakaran D, Hussain Z, Mo S K, Felser C, Yan B and Chen Y L 2015 Nat. Phys. 11 728 doi: 10.1038/nphys3425

    CrossRef Google Scholar

    [7]
    Xu S Y, Belopolski I, Alidoust N, Neupane M, Bian G, Zhang C, Sankar R, Chang G, Yuan Z, Lee C C, Huang S M, Zheng H, Ma J, Sanchez D S, Wang B, Bansil A, Chou F, Shibayev P P, Lin H, Jia S and Hasan M Z 2015 Science 349 613 doi: 10.1126/science.aaa9297

    CrossRef Google Scholar

    [8]
    Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 doi: 10.1103/PhysRevLett.100.096407

    CrossRef Google Scholar

    [9]
    Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K and Jia J F 2015 Phys. Rev. Lett. 114 017001 doi: 10.1103/PhysRevLett.114.017001

    CrossRef Google Scholar

    [10]
    Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H and Shin S 2018 Science 360 182 doi: 10.1126/science.aan4596

    CrossRef Google Scholar

    [11]
    Wang D, Kong L, Fan P, Chen H, Zhu S, Liu W, Cao L, Sun Y, Du S, Schneeloch J, Zhong R, Gu G, Fu L, Ding H and Gao H J 2018 Science 362 333 doi: 10.1126/science.aao1797

    CrossRef Google Scholar

    [12]
    Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X and Feng D L 2018 Phys. Rev. X 8 041056 doi: 10.1103/PhysRevX.8.041056

    CrossRef Google Scholar

    [13]
    Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J and Bernevig B A 2016 Science 353 aaf5037 doi: 10.1126/science.aaf5037

    CrossRef Google Scholar

    [14]
    Tang P, Zhou Q and Zhang S C 2017 Phys. Rev. Lett. 119 206402 doi: 10.1103/PhysRevLett.119.206402

    CrossRef Google Scholar

    [15]
    Chang G, Xu S Y, Wieder B J, Sanchez D S, Huang S M, Belopolski I, Chang T R, Zhang S, Bansil A, Lin H and Hasan M Z 2017 Phys. Rev. Lett. 119 206401 doi: 10.1103/PhysRevLett.119.206401

    CrossRef Google Scholar

    [16]
    Rao Z, Li H, Zhang T, Tian S, Li C, Fu B, Tang C, Wang L, Li Z, Fan W, Li J, Huang Y, Liu Z, Long Y, Fang C, Weng H, Shi Y, Lei H, Sun Y, Qian T and Ding H 2019 Nature 567 496 doi: 10.1038/s41586-019-1031-8

    CrossRef Google Scholar

    [17]
    Wilczek F 2009 Nat. Phys. 5 614 doi: 10.1038/nphys1380

    CrossRef Google Scholar

    [18]
    Stern A 2010 Nature 464 187 doi: 10.1038/nature08915

    CrossRef Google Scholar

    [19]
    Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 doi: 10.1103/RevModPhys.83.1057

    CrossRef Google Scholar

    [20]
    Leijnse M and Flensberg K 2012 Semicond. Sci. Technol. 27 124003 doi: 10.1088/0268-1242/27/12/124003

    CrossRef Google Scholar

    [21]
    Luo X, Shao D F, Pei Q L, Song J Y, Hu L, Han Y Y, Zhu X B, Song W H, Lu W J and Sun Y P 2015 J. Mater. Chem. C 3 11432 doi: 10.1039/C5TC02373D

    CrossRef Google Scholar

    [22]
    Zhu Y L, Hu J, Womack F N, Graf D, Wang Y, Adams P W and Mao Z Q 2019 J. Phys.: Condens. Matter 31 245703 doi: 10.1088/1361-648X/ab0f0d

    CrossRef Google Scholar

    [23]
    Fässler T F and Kronseder C 1997 Angew. Chem. Int. Ed. Engl. 36 2683 doi: 10.1002/anie.199726831

    CrossRef Google Scholar

    [24]
    Blöchl P E 1994 Phys. Rev. B 50 17953 doi: 10.1103/PhysRevB.50.17953

    CrossRef Google Scholar

    [25]
    Lehtomäki J, Makkonen I, Caro M A, Harju A and Lopez-Acevedo O 2014 J. Chem. Phys. 141 234102 doi: 10.1063/1.4903450

    CrossRef Google Scholar

    [26]
    Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 doi: 10.1103/PhysRevLett.77.3865

    CrossRef Google Scholar

    [27]
    Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 doi: 10.1103/PhysRevB.45.13244

    CrossRef Google Scholar

    [28]
    Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 doi: 10.1103/PhysRevB.54.11169

    CrossRef Google Scholar

    [29]
    Kresse G and Hafner J 1993 Phys. Rev. B 47 558 doi: 10.1103/PhysRevB.47.558

    CrossRef Google Scholar

    [30]
    Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 doi: 10.1016/0927-02569600008-0

    CrossRef Google Scholar

    [31]
    Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 doi: 10.1016/j.cpc.2007.11.016

    CrossRef Google Scholar

    [32]
    Souza I, Marzari N and Vanderbilt D 2001 Phys. Rev. B 65 035109 doi: 10.1103/PhysRevB.65.035109

    CrossRef Google Scholar

    [33]
    Marzari N and Vanderbilt D 1997 Phys. Rev. B 56 12847 doi: 10.1103/PhysRevB.56.12847

    CrossRef Google Scholar

    [34]
    Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 doi: 10.1016/j.cpc.2017.09.033

    CrossRef Google Scholar

    [35]
    Mikitik G P and Sharlai Y V 1999 Phys. Rev. Lett. 82 2147 doi: 10.1103/PhysRevLett.82.2147

    CrossRef Google Scholar

    [36]
    Hu J, Tang Z, Liu J, Liu X, Zhu Y, Graf D, Myhro K, Tran S, Lau C N, Wei J and Mao Z 2016 Phys. Rev. Lett. 117 016602 doi: 10.1103/PhysRevLett.117.016602

    CrossRef Google Scholar

    [37]
    Clark O J, Neat M J, Okawa K, Bawden L, Marković I, Mazzola F, Feng J, Sunko V, Riley J M, Meevasana W, Fujii J, Vobornik I, Kim T K, Hoesch M, Sasagawa T, Wahl P, Bahramy M S and King P D C 2018 Phys. Rev. Lett. 120 156401 doi: 10.1103/PhysRevLett.120.156401

    CrossRef Google Scholar

    [38]
    Yang H, Schmidt M, Süss V, Chan M, Balakirev F F, McDonald R D, Parkin S S P, Felser C, Yan B and Moll P J W 2018 New J. Phys. 20 043008 doi: 10.1088/1367-2630/aab32f

    CrossRef Google Scholar

  • Related Articles

    [1]Lixuesong Han, Xianbiao Shi, Jinlong Jiao, Zhenhai Yu, Xia Wang, Na Yu, Zhiqiang Zou, Jie Ma, Weiwei Zhao, Wei Xia, Yanfeng Guo. Nontrivial Topological States in BaSn5 Superconductor Probed by de Haas–van Alphen Quantum Oscillations [J]. Chin. Phys. Lett., 2022, 39(6): 067101. doi: 10.1088/0256-307X/39/6/067101
    [2]Zhe Huang, Xianbiao Shi, Gaoning Zhang, Zhengtai Liu, Soohyun Cho, Zhicheng Jiang, Zhonghao Liu, Jishan Liu, Yichen Yang, Wei Xia, Weiwei Zhao, Yanfeng Guo, Dawei Shen. Photoemission Spectroscopic Evidence of Multiple Dirac Cones in Superconducting BaSn3 [J]. Chin. Phys. Lett., 2021, 38(10): 107403. doi: 10.1088/0256-307X/38/10/107403
    [3]Min Wu, Hongwei Zhang, Xiangde Zhu, Jianwei Lu, Guolin Zheng, Wenshuai Gao, Yuyan Han, Jianhui Zhou, Wei Ning, Mingliang Tian. Contactless Microwave Detection of Shubnikov–De Haas Oscillations in Three-Dimensional Dirac Semimetal ZrTe5 [J]. Chin. Phys. Lett., 2019, 36(6): 067201. doi: 10.1088/0256-307X/36/6/067201
    [4]Junaid Ali Khan, Muhammad Asif Zahoor Raja, Ijaz Mansoor Qureshi. Novel Approach for a van der Pol Oscillator in the Continuous Time Domain [J]. Chin. Phys. Lett., 2011, 28(11): 110205. doi: 10.1088/0256-307X/28/11/110205
    [5]ZHAO Lin, LIU Hai-Yun, ZHANG Wen-Tao, MENG Jian-Qiao, JIA Xiao-Wen, LIU Guo-Dong, DONG Xiao-Li, CHEN Gen-Fu, LUO Jian-Lin, WANG Nan-Lin, LU Wei, WANG Gui-Ling, ZHOU Yong, ZHU Yong, WANG Xiao-Yang, XU Zu-Yan, CHEN Chuang-Tian, ZHOU Xing-Jiang. Multiple Nodeless Superconducting Gaps in (Ba0.6K0.4)Fe2As2 Superconductor from Angle-Resolved Photoemission Spectroscopy [J]. Chin. Phys. Lett., 2008, 25(12): 4402-4405.
    [6]LIU Liao. Quantum de Sitter Spacetime and Energy Density Contributed from the Cosmological Constant [J]. Chin. Phys. Lett., 2008, 25(8): 2789-2790.
    [7]LI Kang, CHAMOUN Nidal. Van der Waals interactions and Photoelectric Effect in Noncommutative Quantum Mechanics [J]. Chin. Phys. Lett., 2007, 24(5): 1183-1186.
    [8]ZHANG Yun, JING Ji-Liang. Dirac Quasinormal Modes of the Schwarzschild--anti-de Sitter Black Hole with a Global Monopole [J]. Chin. Phys. Lett., 2005, 22(10): 2496-2499.
    [9]HOU Guang, HUANG Min-Xin, ZHANG Yong-De. Quantum Multiple Access Channel [J]. Chin. Phys. Lett., 2002, 19(1): 4-6.
    [10]WU Zhong-chao. Quantum Creation of a Schwarzschild-de Sitter Black Hole [J]. Chin. Phys. Lett., 1997, 14(4): 317-320.

Catalog

    Article views (383) PDF downloads (376) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return