A Novel Oxygen-Based Digital Etching Technique for p-GaN/AlGaN Structures without Etch-Stop Layers

  • A novel O_2 plasma-based digital etching technology for p-GaN/AlGaN structures without any etch-stop layer was investigated using an inductively coupled plasma (ICP) etcher, with 100 W ICP power and 40 W rf bias power. Under 40 sccm O_2 flow and 3 min oxidation time, the p-GaN etch depth was 3.62 nm per circle. The surface roughness improved from 0.499 to 0.452 nm after digital etching, meaning that no observable damages were caused by this process. Compared to the dry etch only methods with Cl_2/Ar/O_2 or BCl_3/SF_6 plasma, this technique smoothed the surface and could efficiently control the etch depth due to its self-limiting characteristic. Furthermore, compared to other digital etching processes with an etch-stop layer, this approach was performed using ICP etcher and less demanding on the epitaxial growth. It was proved to be effective in precisely controlling p-GaN etch depth and surface damages required for high performance p-GaN gate high electron mobility transistors.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return