Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement
-
Abstract
We propose a scenario to increase the probability of probabilistic quantum deletion and to enhance the fidelity of approximate quantum deletion for two non-orthogonal states via weak measurement. More interestingly, by pretreating the given non-orthogonal states, the probability of probabilistic quantum deletion and fidelity of approximate quantum deletion can reach 1. Since outcomes of the weak measurement that we required are probabilistic, we perform the subsequent deleting process only when the outcome of weak measurement is "yes". Remarkably, we find that our scenario has better performance in quantum information process; for example, it costs less quantum resources and time.
Article Text
-
-
-
About This Article
Cite this article:
Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 050302. DOI: 10.1088/0256-307X/37/5/050302
Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 050302. DOI: 10.1088/0256-307X/37/5/050302
|
Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 050302. DOI: 10.1088/0256-307X/37/5/050302
Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 050302. DOI: 10.1088/0256-307X/37/5/050302
|