Production of ^87Rb Bose–Einstein Condensate with a Simple Evaporative Cooling Method

  • A Bose–Einstein condensate with a large atom number is an important experimental platform for quantum simulation and quantum information research. An optical dipole trap is the a conventional way to hold the ultracold atoms, where an atomic cloud is evaporatively cooled down before reaching the Bose–Einstein condensate. A carefully designed trap depth controlling curve is typically required to realize the optimal evaporation cooling. We present and demonstrate a simple way to optimize the evaporation cooling in a crossed optical dipole trap. A polyline shape optical power control profile is easily obtained with our method, by which a pure Bose–Einstein condensate with atom number 1.73\times10^5 is produced. Theoretically, we numerically simulate the optimal evaporation cooling using the parameters of our apparatus based on a kinetic theory. Compared to the simulation results, our evaporation cooling shows a good performance. We believe that our simple method can be used to quickly realize evaporation cooling in optical dipole traps.
  • Article Text

  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return