Physical Properties of Half-Heusler Antiferromagnet MnPtSn Single Crystal

Funds: Supported by the National Key R&D Program of China (Grant Nos. 2018YFE0202600, 2016YFA0300504), the National Natural Science Foundation of China (Nos. 11574394, 11774423, 11822412), the Fundamental Research Funds for the Central Universities, the Research Funds of Renmin University of China (RUC) (Nos. 15XNLQ07, 18XNLG14, 19XNLG17), and the Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy (DOE) under Contract No. DE-SC0012704.
  • Received Date: December 04, 2019
  • Published Date: January 31, 2020
  • We report the growth of ternary half-Heusler MnPtSn single crystals and detailed study on its structural and physical properties. MnPtSn single crystal has a larger lattice parameter than that in polycrystal and it exhibits antiferromagnetism with transition temperature TN at about 215 K, distinctly different from the ferromagnetism of MnPtSn polycrystal. Hall resistivity measurement indicates that the dominant carriers are hole-type and the nearly temperature-independent carrier concentration reaches about 2.86×1022 cm3 at 5 K. Moreover, the carrier mobility is also rather low (4.7 cm2V1s1 at 5 K). The above results strongly suggest that the significant Mn/Sn anti-site defects, i.e., the content of Mn in MnPtSn single crystal, play a vital role on structural, magnetic and transport properties.
  • Article Text

  • [1]
    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488 doi: 10.1126/science.1065389}

    CrossRef Google Scholar

    [2]
    Galanakis I and Dederichs P H 2005 Half-metallic Alloys: Fundamentals and Applications Berlin: Springer-Verlag p 1

    Google Scholar

    [3]
    Katsnelson M I, Irkhin V Y, Chioncel L, Lichtenstein A I and de Groot R A 2008 Rev. Mod. Phys. 80 315 doi: 10.1103/RevModPhys.80.315}

    CrossRef Google Scholar

    [4]
    Hirohata A, Sagar J, Lari L, Fleet L R and Lazarov V K 2013 Appl. Phys. A 111 423 doi: 10.1007/s00339-013-7679-2}

    CrossRef Google Scholar

    [5]
    Hirohata A and Takanashi K 2014 J. Phys. D 47 193001 doi: 10.1088/0022-3727/47/19/193001}

    CrossRef Google Scholar

    [6]
    Felser C, Wollmann L, Chadov S, Fecher G H and Parkin S S P 2015 APL Mater. 3 041518 doi: 10.1063/1.4917387}

    CrossRef Google Scholar

    [7]
    Geldart D J W and Ganguly P 1970 Phys. Rev. B 1 3101 doi: 10.1103/PhysRevB.1.3101}

    CrossRef Google Scholar

    [8]
    Podgornykh S M, Streltsov S V, Kazantsev V A and Shreder E I 2007 J. Magn. Magn. Mater. 311 530 doi: 10.1016/j.jmmm.2006.08.024}

    CrossRef Google Scholar

    [9]
    de Groot R A, Mueller F M, van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024 doi: 10.1103/PhysRevLett.50.2024}

    CrossRef Google Scholar

    [10]
    Ishida S, Fujii S, Kashiwagi S and Asano S 1995 J. Phys. Soc. Jpn. 64 2152 doi: 10.1143/JPSJ.64.2152}

    CrossRef Google Scholar

    [11]
    Galanakis I, Dederichs P H and Papanikolaou N 2002 Phys. Rev. B 66 174429 doi: 10.1103/PhysRevB.66.174429}

    CrossRef Google Scholar

    [12]
    Graf T, Felser C and Parkin S S P 2011 Prog. Solid State Chem. 39 1 doi: 10.1016/j.progsolidstchem.2011.02.001}

    CrossRef Google Scholar

    [13]
    Jourdan M, Minár J, Braun J, Kronenberg A, Chadov S, Balke B, Gloskovskii A, Kolbe M, Elmers H J, Schönhense G, Ebert H, Felser C and Kläui M 2014 Nat. Commun. 5 3974 doi: 10.1038/ncomms4974}

    CrossRef Google Scholar

    [14]
    Jeong T, Weht R and Pickett W E 2005 Phys. Rev. B 71 184103 doi: 10.1103/PhysRevB.71.184103}

    CrossRef Google Scholar

    [15]
    Singh S, DSouza S W, Nayak J, Suard E, Chapon L, Senyshyn A, Petricek V, Skourski Y, Nicklas M, Felser C and Chadov S 2016 Nat. Commun. 7 12671 doi: 10.1038/ncomms12671}

    CrossRef Google Scholar

    [16]
    Canfield P C, Thompson J D, Beyermann W P, Lacerda A, Hundley M F, Peterson E, Fisk Z and Ott H R 1991 J. Appl. Phys. 70 5800 doi: 10.1063/1.350141}

    CrossRef Google Scholar

    [17]
    Suzuki T, Chisnell R, Devarakonda A, Liu Y T, Feng W, Xiao D, Lynn J W and Checkelsky J G 2016 Nat. Phys. 12 1119 doi: 10.1038/nphys3831}

    CrossRef Google Scholar

    [18]
    Shekhar C, Kumar N, Grinenko V, Singh S, Sarkar R, Luetkens H, Wu S, Zhang Y, Komarek A C, Kampert E, Skourski Y, Wosnitza J, Schnelle W, McCollam A, Zeitler U, Kübler J, Yan B, Klauss H H, Parkin S S P and Felser C 2018 Proc. Natl. Acad. Sci. USA 115 9140 doi: 10.1073/pnas.1810842115}

    CrossRef Google Scholar

    [19]
    Singha R, Roy S, Pariari A, Satpati B and Mandal P 2019 Phys. Rev. B 99 035110 doi: 10.1103/PhysRevB.99.035110}

    CrossRef Google Scholar

    [20]
    Otto M J, Feil H, van Woerden R A M, Wijngaard J, van der Valk P J, van Bruggen C F and Haas C 1987 J. Magn. Magn. Mater. 70 33 doi: 10.1016/0304-88538790354-4}

    CrossRef Google Scholar

    [21]
    Li Y, Ding B, Wang X, Zhang H, Wang W and Liu Z 2018 Appl. Phys. Lett. 113 062406 doi: 10.1063/1.5039921}

    CrossRef Google Scholar

    [22]
    Swekis P, Markou A, Kriegner D, Gayles J, Schlitz R, Schnelle W, Goennenwein S T B and Felser C 2019 Phys. Rev. Mater. 3 013001R doi: 10.1103/PhysRevMaterials.3.013001}

    CrossRef Google Scholar

    [23]
    Vir P, Gayles J, Sukhanov A S, Kumar N, Damay F, Sun Y, Kübler J, Shekhar C and Felser C 2019 Phys. Rev. B 99 140406R doi: 10.1103/PhysRevB.99.140406}

    CrossRef Google Scholar

    [24]
    Liu Z H, Burigu A, Zhang Y J, Jafri H M, Ma X Q, Liu E K, Wang W H and Wu G H 2018 Scr. Mater. 143 122 doi: 10.1016/j.scriptamat.2017.09.024}

    CrossRef Google Scholar

    [25]
    Buschow K H J, van Engen P G and Jongebreur R 1983 J. Magn. Magn. Mater. 38 1 doi: 10.1016/0304-88538390097-5}

    CrossRef Google Scholar

    [26]
    Slater J C 1964 J. Chem. Phys. 41 3199 doi: 10.1063/1.1725697}

    CrossRef Google Scholar

    [27]
    Kroder J, Manna K, Kriegner D, Sukhanov A S, Liu E K, Borrmann H, Hoser A, Gooth J, Schnelle W, Inosov D S, Fecher G H and Felser C 2019 Phys. Rev. B 99 174410 doi: 10.1103/PhysRevB.99.174410}

    CrossRef Google Scholar

    [28]
    Simon E, Vida J G, Khmelevskyi S and Szunyogh L 2015 Phys. Rev. B 92 054438 doi: 10.1103/PhysRevB.92.054438}

    CrossRef Google Scholar

    [29]
    Jeon B, Koteswararao B, Park C B, Shu G J, Riggs S C, Moon E G, Chung S B, Chou F C and Kim K H 2016 Sci. Rep. 6 36970 doi: 10.1038/srep36970}

    CrossRef Google Scholar

    [30]
    Sharma P A, Ahn J S, Hur N, Park S, Kim S B, Lee S, Park J G, Guha S and Cheong S W 2004 Phys. Rev. Lett. 93 177202 doi: 10.1103/PhysRevLett.93.177202}

    CrossRef Google Scholar

    [31]
    Peacor S D, Cohn J L and Uher C 1991 Phys. Rev. B 43 8721 doi: 10.1103/PhysRevB.43.8721}

    CrossRef Google Scholar

  • Related Articles

    [1]FAN Ping, LIANG Guang-Xing, ZHENG Zhuang-Hao, CAI Xing-Min, ZHANG Dong-Ping. Growth and Characterization of CIS Thin Films Prepared by Ion Beam Sputtering Deposition [J]. Chin. Phys. Lett., 2010, 27(4): 046801. doi: 10.1088/0256-307X/27/4/046801
    [2]LI Wei, MA Zhong-Quan, WANG Ye, WANG De-Ming. Optimization of Energy Scope for Titanium Nitride Films Grown by Ion Beam-Assisted Deposition [J]. Chin. Phys. Lett., 2006, 23(1): 178-181.
    [3]MEI Xian-Xiu, LIU Zhen-Min, MA Teng-Cai, DONG Chuang. Deposition of Diamond-Like Carbon Films by High-Intensity PulsedIon Beam Ablation at Various Substrate Temperatures [J]. Chin. Phys. Lett., 2003, 20(9): 1619-1621.
    [4]LU Xian-Feng, LI Jin-Chai, GUO Huai-Xi, ZHANG Zhi-Hong, YE Ming-Sheng. Electron Field Emission of CNx Thin Films Prepared by Low Pressure Plasma Enhanced Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2002, 19(3): 416-418.
    [5]MEN Chuan-Ling, XU Zheng, ZHENG Zhi-Hong, DUO Xin-Zhong, ZHANG Miao, LIN Cheng-Lu. Preparation of AlN Films by Ion-Beam-Enhanced Deposition [J]. Chin. Phys. Lett., 2001, 18(9): 1282-1284.
    [6]WANG Pei-nan, Pan Qi, Cheung Nai-Ho, Chen Shu-Chi. A Novel Application of the Pulsed Nitrogen Discharge in the Synthesis of Aluminum Nitride Powder by Laser Ablation [J]. Chin. Phys. Lett., 1997, 14(12): 953-956.
    [7]YING Zhi-feng, REN Zhong-min, DU Yuan-cheng, LI Fu-ming, LIN Jing, REN Yun-zhu, ZONG Xiang-fu. Ion-Beam Bombarding Effects on Deposition of Carbon Nitride Films by Laser Ablation [J]. Chin. Phys. Lett., 1996, 13(11): 878-880.
    [8]REN Zhong-min, DU Yuan-cheng, YING Zhi-feng, LI Fu-ming, LIN Jing, REN Yun-Zhu, ZONG Xiang-fu. Formation of Carbon Nitride Films by Nitrogen Ion Bombardment on C60 Films [J]. Chin. Phys. Lett., 1996, 13(9): 714-717.
    [9]MAN Zhenyong, PAN Zhengying, LIU Lei, LI Rongwu. Molecular Dynamics Simulation of Low-Energy C60 in Collision with a Graphite (0001) Surface [J]. Chin. Phys. Lett., 1995, 12(12): 751-754.
    [10]HAN Lijun, JIANG Xingliu. Transformation of Graphite to Diamond by Bombardment of Intense Pulsed Electron Beams [J]. Chin. Phys. Lett., 1992, 9(4): 194-197.

Catalog

    Article views (434) PDF downloads (730) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return