A CMOS Compatible Si Template with (111) Facets for Direct Epitaxial Growth of III–V Materials
-
Abstract
III–V quantum dot (QD) lasers monolithically grown on CMOS-compatible Si substrates are considered as essential components for integrated silicon photonic circuits. However, epitaxial growth of III–V materials on Si substrates encounters three obstacles: mismatch defects, antiphase boundaries (APBs), and thermal cracks. We study the evolution of the structures on U-shaped trench-patterned Si (001) substrates with various trench orientations by homoepitaxy and the subsequent heteroepitaxial growth of GaAs film. The results show that the formation of (111)-faceted hollow structures on patterned Si (001) substrates with trenches oriented along 110 direction can effectively reduce the defect density and thermal stress in the GaAs/Si epilayers. The (111)-faceted silicon hollow structure can act as a promising platform for the direct growth of III–V materials for silicon based optoelectronic applications.
Article Text
-
-
-
About This Article
Cite this article:
Wen-Qi Wei, Jian-Huan Wang, Jie-Yin Zhang, Qi Feng, Zihao Wang, Hong-Xing Xu, Ting Wang, Jian-Jun Zhang. A CMOS Compatible Si Template with (111) Facets for Direct Epitaxial Growth of III–V Materials[J]. Chin. Phys. Lett., 2020, 37(2): 024203. DOI: 10.1088/0256-307X/37/2/024203
Wen-Qi Wei, Jian-Huan Wang, Jie-Yin Zhang, Qi Feng, Zihao Wang, Hong-Xing Xu, Ting Wang, Jian-Jun Zhang. A CMOS Compatible Si Template with (111) Facets for Direct Epitaxial Growth of III–V Materials[J]. Chin. Phys. Lett., 2020, 37(2): 024203. DOI: 10.1088/0256-307X/37/2/024203
|
Wen-Qi Wei, Jian-Huan Wang, Jie-Yin Zhang, Qi Feng, Zihao Wang, Hong-Xing Xu, Ting Wang, Jian-Jun Zhang. A CMOS Compatible Si Template with (111) Facets for Direct Epitaxial Growth of III–V Materials[J]. Chin. Phys. Lett., 2020, 37(2): 024203. DOI: 10.1088/0256-307X/37/2/024203
Wen-Qi Wei, Jian-Huan Wang, Jie-Yin Zhang, Qi Feng, Zihao Wang, Hong-Xing Xu, Ting Wang, Jian-Jun Zhang. A CMOS Compatible Si Template with (111) Facets for Direct Epitaxial Growth of III–V Materials[J]. Chin. Phys. Lett., 2020, 37(2): 024203. DOI: 10.1088/0256-307X/37/2/024203
|