Gap Structure of 12442-Type KCa2(Fe1−xCox)4As4F2 (x = 0, 0.1) Revealed by Temperature Dependence of Lower Critical Field
-
Abstract
We report an in-depth investigation on the out-of-plane lower critical field Hc1 of the KCa2(Fe1−xCox)4As4F2 (12442-type, x = 0, 0.1). The multi-gap feature is revealed by the kink in the temperature-dependent Hc1(T) curve for the two samples with different doping levels. Based on a simplified two-gap model, the magnitudes of the two gaps are determined to be Δ1 = 1.2 meV and Δ2 = 5.0 meV for the sample with x = 0, Δ1 = 0.86 meV and Δ2 = 2.8 meV for that with x = 0.1. With the cobalt doping, the ratio of energy gap to critical transition temperature (Δ/kBTc) remains almost unchanged for the smaller gap and is suppressed by 20% for the larger gap. For the undoped KCa2Fe4As4F2, the obtained gap sizes are generally consistent with the results of angle-resolved photoemission spectroscopy experiments. -
-
References
[1] Bednorz J G and Müller K A 1986 Z. Phys. B 64 189 doi: 10.1007/BF01303701[2] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 doi: 10.1021/ja800073m[3] Hirschfeld P J, Korshunov M M and Mazin I I 2011 Rep. Prog. Phys. 74 124508 doi: 10.1088/0034-4885/74/12/124508[4] Mazin I I, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003 doi: 10.1103/PhysRevLett.101.057003[5] Raghu S, Qi X L, Liu C X, Scalapino D J and Zhang S C 2008 Phys. Rev. B 77 220503 doi: 10.1103/PhysRevB.77.220503[6] Ma F, Lu Z Y and Xiang T 2008 Phys. Rev. B 78 224517 doi: 10.1103/PhysRevB.78.224517[7] Yildirim T 2008 Phys. Rev. Lett. 101 057010 doi: 10.1103/PhysRevLett.101.057010[8] Si Q and Abrahams E 2008 Phys. Rev. Lett. 101 076401 doi: 10.1103/PhysRevLett.101.076401[9] Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M and Cao G H 2016 J. Am. Chem. Soc. 138 7856 doi: 10.1021/jacs.6b04538[10] Wang Z, He C, Tang Z, Wu S and Cao G 2017 Sci. Chin. Mater. 60 83 doi: 10.1007/s40843-016-5150-x[11] Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Tao Q, Feng C M, Xu Z A and Cao G H 2017 J. Phys.: Condens. Matter 29 11LT01 doi: 10.1088/1361-648X/aa58d2[12] Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y and Cao G H 2017 Chem. Mater. 29 1805 doi: 10.1021/acs.chemmater.6b05458[13] Wu S Q, Wang Z C, He C Y, Tang Z T, Liu Y and Cao G H 2017 Phys. Rev. Mater. 1 044804 doi: 10.1103/PhysRevMaterials.1.044804[14] Wang T, Zhang C, Xu L C, Wang J H, Jiang S, Zhu Z W, Wang Z S, Chu J N, Feng J X, Wang L L, Li W, Hu T, Liu X S and Mu G 2020 Sci. Chin. Phys. Mech. & Astron. 63 227412 doi: 10.1007/s11433-019-1441-4[15] Pyon S, Kobayashi Y, Takahashi A, Li W, Wang T, Mu G, Ichinose A, Kambara T, Yoshida A and Tamegai T 2020 Phys. Rev. Mater. 4 104801 doi: 10.1103/PhysRevMaterials.4.104801[16] Zhang C, Hu T, Wang T, Wu Y, Yu A, Chu J, Zhang H, Xiao H, Peng W, Di Z, Qiao S and Mu G 2020 arXiv:2006.03338 [cond-mat.supr-con][17] Yu A B, Wang T, Wu Y F, Huang Z, Xiao H, Mu G and Hu T 2019 Phys. Rev. B 100 144505 doi: 10.1103/PhysRevB.100.144505[18] Terashima T, Matsushita Y, Yamase H, Kikugawa N, Abe H, Imai M, Uji S, Ishida S, Eisaki H, Iyo A, Kihou K, Lee C H, Wang T and Mu G 2020 Phys. Rev. B 102 054511 doi: 10.1103/PhysRevB.102.054511[19] Hong W, Song L, Liu B, Li Z, Zeng Z, Li Y, Wu D, Sui Q, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J, Zhao L, Zhou X, Qiu X, Li S and Luo H 2020 Phys. Rev. Lett. 125 117002 doi: 10.1103/PhysRevLett.125.117002[20] Kirschner F K K, Adroja D T, Wang Z C, Lang F, Smidman M, Baker P J, Cao G H and Blundell S J 2018 Phys. Rev. B 97 060506R doi: 10.1103/PhysRevB.97.060506[21] Smidman M, Kirschner F K K, Adroja D T, Hillier A D, Lang F, Wang Z C, Cao G H and Blundell S J 2018 Phys. Rev. B 97 060509 doi: 10.1103/PhysRevB.97.060509[22] Adroja D T, Kirschner F K K, Lang F, Smidman M, Hillier A D, Wang Z C, Cao G H, Stenning G B G and Blundell S J 2018 J. Phys. Soc. Jpn. 87 124705 doi: 10.7566/JPSJ.87.124705[23] Huang Y Y, Wang Z C, Yu Y J, Ni J M, Li Q, Cheng E J, Cao G H and Li S Y 2019 Phys. Rev. B 99 020502R doi: 10.1103/PhysRevB.99.020502[24] Wang Z C, Liu Y, Wu S Q, Shao Y T, Ren Z and Cao G H 2019 Phys. Rev. B 99 144501 doi: 10.1103/PhysRevB.99.144501[25] Xu B, Wang Z C, Sheveleva E, Lyzwa F, Marsik P, Cao G H and Bernhard C 2019 Phys. Rev. B 99 125119 doi: 10.1103/PhysRevB.99.125119[26] Wang T, Chu J N, Feng J X, Wang L L, Xu X G, Li W, Wen H H, Liu X S and Mu G 2020 Sci. Chin. Phys. Mech. & Astron. 63 297412 doi: 10.1007/s11433-020-1549-9[27] Wu D, Hong W, Dong C, Wu X, Sui Q, Huang J, Gao Q, Li C, Song C, Luo H, Yin C, Xu Y, Luo X, Cai Y, Jia J, Wang Q, Huang Y, Liu G, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Xu Z, Qiu X, Li S, Luo H, Hu J, Zhao L and Zhou X J 2020 Phys. Rev. B 101 224508 doi: 10.1103/PhysRevB.101.224508[28] Wang T, Chu J N, Jin H, Feng J X, Wang L L, Song Y K, Zhang C, Li W, Li Z J, Hu T, Jiang D, Peng W, Liu X S and Mu G 2019 J. Phys. Chem. C 123 13925 doi: 10.1021/acs.jpcc.9b04624[29] Ma Y H, Zhang H, Gao B, Hu K K, Ji Q C, Mu G, Huang F Q and Xie X M 2015 Supercond. Sci. Technol. 28 085008 doi: 10.1088/0953-2048/28/8/085008[30] Ma Y H, Hu K K, Ji Q C, Gao B, Zhang H, Mu G, Huang F Q and Xie X M 2016 J. Cryst. Growth 451 161 doi: 10.1016/j.jcrysgro.2016.07.029[31] Ren C, Wang Z S, Luo H Q, Yang H, Shan L and Wen H H 2008 Phys. Rev. Lett. 101 257006 doi: 10.1103/PhysRevLett.101.257006[32] Wang T, Ma Y H, Li W, Chu J N, Wang L L, Feng J X, Xiao H, Li Z J, Hu T, Liu X S and Mu G 2019 npj Quantum Mater. 4 33 doi: 10.1038/s41535-019-0173-0[33] Wang G, Wang Z and Shi X 2016 Europhys. Lett. 116 37003 doi: 10.1209/0295-5075/116/37003[34] Carrington A and Manzano F 2003 Physica C 385 205 doi: 10.1016/S0921-45340202319-5 -
Related Articles
[1] OUYANG Ji-Ting, DUAN Xiao-Xi, XU Shao-Wei, HE Feng. The Key Factor for Uniform and Patterned Glow Dielectric Barrier Discharge [J]. Chin. Phys. Lett., 2012, 29(2): 025201. doi: 10.1088/0256-307X/29/2/025201 [2] LI Xue-Chen, JIA Peng-Ying, ZHAO Na. Spatial-Temporal Patterns in a Dielectric Barrier Discharge under Narrow Boundary Conditions in Argon at Atmospheric Pressure [J]. Chin. Phys. Lett., 2011, 28(4): 045203. doi: 10.1088/0256-307X/28/4/045203 [3] SUN Ji-Zhong, WANG Qi, ZHANG Jian-Hong, WANG Yan-Hui, WANG De-Zhen. Self-Consistent Model for Atmospheric Pressure Dielectric Barrier Discharges in Helium [J]. Chin. Phys. Lett., 2008, 25(11): 4054-4057. [4] LIANG Zhuo, LUO Hai-Yun, Wang Xin-Xin, LV Bo, GUAN Zhi-Cheng, WANGLi-Ming. Determination of Ionization Coefficient of Atmospheric Helium in Dielectric Barrier Discharge [J]. Chin. Phys. Lett., 2008, 25(6): 2136-2139. [5] FENG Shuo, HE Feng, OUYANG Ji-Ting. Mechanism of Striation in Dielectric Barrier Discharge [J]. Chin. Phys. Lett., 2007, 24(8): 2304-2307. [6] LIU Shu-Hua, DONG Li-Fang, LIU Fu-Cheng, LI Shu-Feng, LI Xue-Chen, WANG Hong-Fang. Experimental Study on Spiral Patterns in Dielectric Barrier Discharge System [J]. Chin. Phys. Lett., 2006, 23(12): 3316-3319. [7] ZHANG Yuan-Tao, WANG De-Zhen, WANG Yan-Hui, LIU Cheng-Sen. Radial Evolution of the Atmospheric Pressure Glow Discharge in Helium Controlled by Dielectric Barrier [J]. Chin. Phys. Lett., 2005, 22(1): 171-174. [8] OU Qiong-Rong, MENG Yue-Dong, XU Xu, SHU Xing-Sheng, REN Zhao-Xing. Effect of Frequency on Emission of XeI* Excimer in a Pulsed Dielectric Barrier Discharge [J]. Chin. Phys. Lett., 2004, 21(7): 1317-1319. [9] DONG Li-Fang, HE Ya-Feng, YIN Zeng-Qian, CHAI Zhi-Fang. Experimental Observation of Traveling Hexagon Patterns in Dielectric Barrier Discharge [J]. Chin. Phys. Lett., 2003, 20(9): 1524-1526. [10] DONG Li-Fang, LI Xue-Chen, YIN Zeng-Qian, QIAN Sheng-Fa, OUYANG Ji-Ting, WANG Long. Self-Organized Filaments in Dielectric Barrier Discharge in Air at Atmosphere Pressure [J]. Chin. Phys. Lett., 2001, 18(10): 1380-1382.