Loading [MathJax]/jax/output/SVG/fonts/TeX/fontdata.js

Gap Structure of 12442-Type KCa2(Fe1xCox)4As4F2 (x = 0, 0.1) Revealed by Temperature Dependence of Lower Critical Field

Funds: Supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2015187), the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB30000000), and the National Natural Science Foundation of China (Grant Nos. 11704395 and 11204338).
  • Received Date: September 08, 2020
  • Published Date: November 30, 2020
  • We report an in-depth investigation on the out-of-plane lower critical field Hc1 of the KCa2(Fe1xCox)4As4F2 (12442-type, x = 0, 0.1). The multi-gap feature is revealed by the kink in the temperature-dependent Hc1(T) curve for the two samples with different doping levels. Based on a simplified two-gap model, the magnitudes of the two gaps are determined to be Δ1 = 1.2 meV and Δ2 = 5.0 meV for the sample with x = 0, Δ1 =  0.86 meV and Δ2 = 2.8 meV for that with x = 0.1. With the cobalt doping, the ratio of energy gap to critical transition temperature (Δ/kBTc) remains almost unchanged for the smaller gap and is suppressed by 20% for the larger gap. For the undoped KCa2Fe4As4F2, the obtained gap sizes are generally consistent with the results of angle-resolved photoemission spectroscopy experiments.
  • Article Text

  • [1]
    Bednorz J G and Müller K A 1986 Z. Phys. B 64 189 doi: 10.1007/BF01303701

    CrossRef Google Scholar

    [2]
    Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 doi: 10.1021/ja800073m

    CrossRef Google Scholar

    [3]
    Hirschfeld P J, Korshunov M M and Mazin I I 2011 Rep. Prog. Phys. 74 124508 doi: 10.1088/0034-4885/74/12/124508

    CrossRef Google Scholar

    [4]
    Mazin I I, Singh D J, Johannes M D and Du M H 2008 Phys. Rev. Lett. 101 057003 doi: 10.1103/PhysRevLett.101.057003

    CrossRef Google Scholar

    [5]
    Raghu S, Qi X L, Liu C X, Scalapino D J and Zhang S C 2008 Phys. Rev. B 77 220503 doi: 10.1103/PhysRevB.77.220503

    CrossRef Google Scholar

    [6]
    Ma F, Lu Z Y and Xiang T 2008 Phys. Rev. B 78 224517 doi: 10.1103/PhysRevB.78.224517

    CrossRef Google Scholar

    [7]
    Yildirim T 2008 Phys. Rev. Lett. 101 057010 doi: 10.1103/PhysRevLett.101.057010

    CrossRef Google Scholar

    [8]
    Si Q and Abrahams E 2008 Phys. Rev. Lett. 101 076401 doi: 10.1103/PhysRevLett.101.076401

    CrossRef Google Scholar

    [9]
    Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M and Cao G H 2016 J. Am. Chem. Soc. 138 7856 doi: 10.1021/jacs.6b04538

    CrossRef Google Scholar

    [10]
    Wang Z, He C, Tang Z, Wu S and Cao G 2017 Sci. Chin. Mater. 60 83 doi: 10.1007/s40843-016-5150-x

    CrossRef Google Scholar

    [11]
    Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Tao Q, Feng C M, Xu Z A and Cao G H 2017 J. Phys.: Condens. Matter 29 11LT01 doi: 10.1088/1361-648X/aa58d2

    CrossRef Google Scholar

    [12]
    Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y and Cao G H 2017 Chem. Mater. 29 1805 doi: 10.1021/acs.chemmater.6b05458

    CrossRef Google Scholar

    [13]
    Wu S Q, Wang Z C, He C Y, Tang Z T, Liu Y and Cao G H 2017 Phys. Rev. Mater. 1 044804 doi: 10.1103/PhysRevMaterials.1.044804

    CrossRef Google Scholar

    [14]
    Wang T, Zhang C, Xu L C, Wang J H, Jiang S, Zhu Z W, Wang Z S, Chu J N, Feng J X, Wang L L, Li W, Hu T, Liu X S and Mu G 2020 Sci. Chin. Phys. Mech. & Astron. 63 227412 doi: 10.1007/s11433-019-1441-4

    CrossRef Google Scholar

    [15]
    Pyon S, Kobayashi Y, Takahashi A, Li W, Wang T, Mu G, Ichinose A, Kambara T, Yoshida A and Tamegai T 2020 Phys. Rev. Mater. 4 104801 doi: 10.1103/PhysRevMaterials.4.104801

    CrossRef Google Scholar

    [16]
    Zhang C, Hu T, Wang T, Wu Y, Yu A, Chu J, Zhang H, Xiao H, Peng W, Di Z, Qiao S and Mu G 2020 arXiv:2006.03338 [cond-mat.supr-con]

    Google Scholar

    [17]
    Yu A B, Wang T, Wu Y F, Huang Z, Xiao H, Mu G and Hu T 2019 Phys. Rev. B 100 144505 doi: 10.1103/PhysRevB.100.144505

    CrossRef Google Scholar

    [18]
    Terashima T, Matsushita Y, Yamase H, Kikugawa N, Abe H, Imai M, Uji S, Ishida S, Eisaki H, Iyo A, Kihou K, Lee C H, Wang T and Mu G 2020 Phys. Rev. B 102 054511 doi: 10.1103/PhysRevB.102.054511

    CrossRef Google Scholar

    [19]
    Hong W, Song L, Liu B, Li Z, Zeng Z, Li Y, Wu D, Sui Q, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J, Zhao L, Zhou X, Qiu X, Li S and Luo H 2020 Phys. Rev. Lett. 125 117002 doi: 10.1103/PhysRevLett.125.117002

    CrossRef Google Scholar

    [20]
    Kirschner F K K, Adroja D T, Wang Z C, Lang F, Smidman M, Baker P J, Cao G H and Blundell S J 2018 Phys. Rev. B 97 060506R doi: 10.1103/PhysRevB.97.060506

    CrossRef Google Scholar

    [21]
    Smidman M, Kirschner F K K, Adroja D T, Hillier A D, Lang F, Wang Z C, Cao G H and Blundell S J 2018 Phys. Rev. B 97 060509 doi: 10.1103/PhysRevB.97.060509

    CrossRef Google Scholar

    [22]
    Adroja D T, Kirschner F K K, Lang F, Smidman M, Hillier A D, Wang Z C, Cao G H, Stenning G B G and Blundell S J 2018 J. Phys. Soc. Jpn. 87 124705 doi: 10.7566/JPSJ.87.124705

    CrossRef Google Scholar

    [23]
    Huang Y Y, Wang Z C, Yu Y J, Ni J M, Li Q, Cheng E J, Cao G H and Li S Y 2019 Phys. Rev. B 99 020502R doi: 10.1103/PhysRevB.99.020502

    CrossRef Google Scholar

    [24]
    Wang Z C, Liu Y, Wu S Q, Shao Y T, Ren Z and Cao G H 2019 Phys. Rev. B 99 144501 doi: 10.1103/PhysRevB.99.144501

    CrossRef Google Scholar

    [25]
    Xu B, Wang Z C, Sheveleva E, Lyzwa F, Marsik P, Cao G H and Bernhard C 2019 Phys. Rev. B 99 125119 doi: 10.1103/PhysRevB.99.125119

    CrossRef Google Scholar

    [26]
    Wang T, Chu J N, Feng J X, Wang L L, Xu X G, Li W, Wen H H, Liu X S and Mu G 2020 Sci. Chin. Phys. Mech. & Astron. 63 297412 doi: 10.1007/s11433-020-1549-9

    CrossRef Google Scholar

    [27]
    Wu D, Hong W, Dong C, Wu X, Sui Q, Huang J, Gao Q, Li C, Song C, Luo H, Yin C, Xu Y, Luo X, Cai Y, Jia J, Wang Q, Huang Y, Liu G, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Xu Z, Qiu X, Li S, Luo H, Hu J, Zhao L and Zhou X J 2020 Phys. Rev. B 101 224508 doi: 10.1103/PhysRevB.101.224508

    CrossRef Google Scholar

    [28]
    Wang T, Chu J N, Jin H, Feng J X, Wang L L, Song Y K, Zhang C, Li W, Li Z J, Hu T, Jiang D, Peng W, Liu X S and Mu G 2019 J. Phys. Chem. C 123 13925 doi: 10.1021/acs.jpcc.9b04624

    CrossRef Google Scholar

    [29]
    Ma Y H, Zhang H, Gao B, Hu K K, Ji Q C, Mu G, Huang F Q and Xie X M 2015 Supercond. Sci. Technol. 28 085008 doi: 10.1088/0953-2048/28/8/085008

    CrossRef Google Scholar

    [30]
    Ma Y H, Hu K K, Ji Q C, Gao B, Zhang H, Mu G, Huang F Q and Xie X M 2016 J. Cryst. Growth 451 161 doi: 10.1016/j.jcrysgro.2016.07.029

    CrossRef Google Scholar

    [31]
    Ren C, Wang Z S, Luo H Q, Yang H, Shan L and Wen H H 2008 Phys. Rev. Lett. 101 257006 doi: 10.1103/PhysRevLett.101.257006

    CrossRef Google Scholar

    [32]
    Wang T, Ma Y H, Li W, Chu J N, Wang L L, Feng J X, Xiao H, Li Z J, Hu T, Liu X S and Mu G 2019 npj Quantum Mater. 4 33 doi: 10.1038/s41535-019-0173-0

    CrossRef Google Scholar

    [33]
    Wang G, Wang Z and Shi X 2016 Europhys. Lett. 116 37003 doi: 10.1209/0295-5075/116/37003

    CrossRef Google Scholar

    [34]
    Carrington A and Manzano F 2003 Physica C 385 205 doi: 10.1016/S0921-45340202319-5

    CrossRef Google Scholar

  • Related Articles

    [1]OUYANG Ji-Ting, DUAN Xiao-Xi, XU Shao-Wei, HE Feng. The Key Factor for Uniform and Patterned Glow Dielectric Barrier Discharge [J]. Chin. Phys. Lett., 2012, 29(2): 025201. doi: 10.1088/0256-307X/29/2/025201
    [2]LI Xue-Chen, JIA Peng-Ying, ZHAO Na. Spatial-Temporal Patterns in a Dielectric Barrier Discharge under Narrow Boundary Conditions in Argon at Atmospheric Pressure [J]. Chin. Phys. Lett., 2011, 28(4): 045203. doi: 10.1088/0256-307X/28/4/045203
    [3]SUN Ji-Zhong, WANG Qi, ZHANG Jian-Hong, WANG Yan-Hui, WANG De-Zhen. Self-Consistent Model for Atmospheric Pressure Dielectric Barrier Discharges in Helium [J]. Chin. Phys. Lett., 2008, 25(11): 4054-4057.
    [4]LIANG Zhuo, LUO Hai-Yun, Wang Xin-Xin, LV Bo, GUAN Zhi-Cheng, WANGLi-Ming. Determination of Ionization Coefficient of Atmospheric Helium in Dielectric Barrier Discharge [J]. Chin. Phys. Lett., 2008, 25(6): 2136-2139.
    [5]FENG Shuo, HE Feng, OUYANG Ji-Ting. Mechanism of Striation in Dielectric Barrier Discharge [J]. Chin. Phys. Lett., 2007, 24(8): 2304-2307.
    [6]LIU Shu-Hua, DONG Li-Fang, LIU Fu-Cheng, LI Shu-Feng, LI Xue-Chen, WANG Hong-Fang. Experimental Study on Spiral Patterns in Dielectric Barrier Discharge System [J]. Chin. Phys. Lett., 2006, 23(12): 3316-3319.
    [7]ZHANG Yuan-Tao, WANG De-Zhen, WANG Yan-Hui, LIU Cheng-Sen. Radial Evolution of the Atmospheric Pressure Glow Discharge in Helium Controlled by Dielectric Barrier [J]. Chin. Phys. Lett., 2005, 22(1): 171-174.
    [8]OU Qiong-Rong, MENG Yue-Dong, XU Xu, SHU Xing-Sheng, REN Zhao-Xing. Effect of Frequency on Emission of XeI* Excimer in a Pulsed Dielectric Barrier Discharge [J]. Chin. Phys. Lett., 2004, 21(7): 1317-1319.
    [9]DONG Li-Fang, HE Ya-Feng, YIN Zeng-Qian, CHAI Zhi-Fang. Experimental Observation of Traveling Hexagon Patterns in Dielectric Barrier Discharge [J]. Chin. Phys. Lett., 2003, 20(9): 1524-1526.
    [10]DONG Li-Fang, LI Xue-Chen, YIN Zeng-Qian, QIAN Sheng-Fa, OUYANG Ji-Ting, WANG Long. Self-Organized Filaments in Dielectric Barrier Discharge in Air at Atmosphere Pressure [J]. Chin. Phys. Lett., 2001, 18(10): 1380-1382.

Catalog

    Article views (437) PDF downloads (282) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return