Hermite Non-Uniformly Correlated Array Beams and Its Propagation Properties

Funds: Supported by the National Key Research and Development Program of China (Grant No. 2019YFA0705000), the National Natural Science Foundation of China (Grant Nos. 91750201, 11525418, 11947240, 11974218, 12004218, and 11904087), the Local Science and Technology Development Project of the Central Government (Grant No. YDZX20203700001766), and Innovation Group of Jinan (Grant No. 2018GXRC010).
  • Received Date: September 27, 2020
  • Published Date: November 30, 2020
  • We study the evolution of spectral intensity and degree of coherence of a new class of partially coherent beams, Hermite non-uniformly correlated array beams, in free space and in turbulence, based on the extended Huygens–Fresnel integral. Such beams possess controllable rectangular grid distributions due to multi-self-focusing propagation property. Furthermore, it is demonstrated that adjusting the initial beam parameters, mode order, shift parameters, array parameters and correlation width plays a role in resisting intensity and degree of coherence degradation effects of the turbulence.
  • Article Text

  • [1]
    Gbur G 2014 J. Opt. Soc. Am. A 31 2038 doi: 10.1364/JOSAA.31.002038

    CrossRef Google Scholar

    [2]
    Wang F, Liu X and Cai Y 2015 Prog. Electromagn. Res. 150 123 doi: 10.2528/PIER15010802

    CrossRef Google Scholar

    [3]
    Chen Y, Ponomarenko S A and Cai Y 2016 Appl. Phys. Lett. 109 061107 doi: 10.1063/1.4960966

    CrossRef Google Scholar

    [4]
    Cai Y, Chen Y, Yu J, Liu X and Liu L 2017 Prog. Opt. 62 157 doi: 10.1016/bs.po.2016.11.001

    CrossRef Google Scholar

    [5]
    Gbur G and Wolf E 2002 J. Opt. Soc. Am. A 19 1592 doi: 10.1364/JOSAA.19.001592

    CrossRef Google Scholar

    [6]
    Shirai T, Dogariu A and Wolf E 2003 J. Opt. Soc. Am. A 20 1094 doi: 10.1364/JOSAA.20.001094

    CrossRef Google Scholar

    [7]
    Lajunen H and Saastamoinen T 2013 Opt. Express 21 190 doi: 10.1364/OE.21.000190

    CrossRef Google Scholar

    [8]
    Yu J, Cai Y and Gbur G 2018 Opt. Express 26 27894 doi: 10.1364/OE.26.027894

    CrossRef Google Scholar

    [9]
    Yu J, Zhu X, Lin S, Wang F, Gbur G and Cai Y 2020 Opt. Lett. 45 3824 doi: 10.1364/OL.397316

    CrossRef Google Scholar

    [10]
    Gori F and Santarsiero M 2007 Opt. Lett. 32 3531 doi: 10.1364/OL.32.003531

    CrossRef Google Scholar

    [11]
    Gu Y and Gbur G 2013 Opt. Lett. 38 1395 doi: 10.1364/OL.38.001395

    CrossRef Google Scholar

    [12]
    Yu J, Wang F, Liu L, Cai Y and Gbur G 2018 Opt. Express 26 16333 doi: 10.1364/OE.26.016333

    CrossRef Google Scholar

    [13]
    Lin S, Wang C, Zhu X, Lin R, Wang F, Gbur G, Cai Y and Yu J 2020 Opt. Express 28 27238 doi: 10.1364/OE.402021

    CrossRef Google Scholar

    [14]
    Cai Y, Chen Y, Eyyuboglu H T and Baykal Y 2007 Appl. Phys. B 88 467 doi: 10.1007/s00340-007-2680-0

    CrossRef Google Scholar

    [15]
    Zhou X, Zhou Z, Tian P and Yuan X 2019 Appl. Opt. 58 9443 doi: 10.1364/AO.58.009443

    CrossRef Google Scholar

    [16]
    Singh R K, Sharma A M and Senthilkumaran P 2015 Opt. Lett. 40 2751 doi: 10.1364/OL.40.002751

    CrossRef Google Scholar

    [17]
    Wan L and Zhao D 2018 Opt. Lett. 43 3554 doi: 10.1364/OL.43.003554

    CrossRef Google Scholar

    [18]
    Mu T, Chen Z, Pacheco S, Wu R, Zhang C and Liang R 2016 Opt. Lett. 41 261 doi: 10.1364/OL.41.000261

    CrossRef Google Scholar

    [19]
    Liang C, Zhu X, Mi C, Peng X, Wang F, Cai Y and Ponomarenko S A 2018 Opt. Lett. 43 3188 doi: 10.1364/OL.43.003188

    CrossRef Google Scholar

    [20]
    Andrews L C and Phillips R L 2005 Laser Beam Propagation through Random Media 2nd edn Bellinghan: SPIE

    Google Scholar

    [21]
    Toselli I, Andrews L C, Phillips R L and F V 2008 Opt. Eng. 47 026003 doi: 10.1117/1.2870113

    CrossRef Google Scholar

  • Related Articles

    [1]SUN Zong-Li, KANG Yan-Shuang. Curvature Dependence of Interfacial Properties for Associating Lennard–Jones Fluids: A Density Functional Study [J]. Chin. Phys. Lett., 2011, 28(2): 026101. doi: 10.1088/0256-307X/28/2/026101
    [2]QUAN Guo-Tao, GONG Hui, FU Jian-Wei, DENG Yong. Photon-Measurement Density Function of Fluorescence Molecular Tomography Based on Direct Method [J]. Chin. Phys. Lett., 2010, 27(11): 118701. doi: 10.1088/0256-307X/27/11/118701
    [3]ZHANG Ping, CAI Liang, LIAN Zeng-Ju, PAN Xiao-Yin. Density Profile of a Hard Disk Liquid System under Gravity [J]. Chin. Phys. Lett., 2010, 27(8): 080504. doi: 10.1088/0256-307X/27/8/080504
    [4]KANG Yan-Shuang, WANG Hai-Jun. Density Functional Theory Approach for Charged Hard Sphere Fluids Confined in Spherical Micro-Cavity [J]. Chin. Phys. Lett., 2009, 26(12): 126102. doi: 10.1088/0256-307X/26/12/126102
    [5]HU Jia-Wen, YU Yang-Xin. Prediction and Refinement of High-Order Virial Coefficients for a Hard-Sphere System [J]. Chin. Phys. Lett., 2009, 26(8): 086404. doi: 10.1088/0256-307X/26/8/086404
    [6]SUN Li-Zhen, LUO Meng-Bo. Hard Sphere Diffusion Behaviour of Polymer Translocating through Interacting Pores [J]. Chin. Phys. Lett., 2008, 25(11): 4050-4053.
    [7]FU Dong. Nucleation for Lennard-Jones Fluid by Density Functional Theory [J]. Chin. Phys. Lett., 2005, 22(6): 1378-1381.
    [8]YU Yang-Xin, WU Jian-Zhong, YOU Feng-Qi, GAO Guang-Hua. A Self-Consistent Theory for the Inter- and Intramolecular Correlation Functions of a Hard-Sphere-Yukawa-Chain Fluids [J]. Chin. Phys. Lett., 2005, 22(1): 246-249.
    [9]LI Wei-Hua, ZHU Wei-Zhao, MA Hong-Ru. Equilibrium Properties of Hard Sphere Fluid in Confined Geometries: A Density Functional Theory Study [J]. Chin. Phys. Lett., 2003, 20(2): 259-262.
    [10]XIAO Chang-Ming, JIN Guo-Jun, Ma Yu-Qiang. Packing Effect of Excluded Volume on Hard-Sphere Colloids [J]. Chin. Phys. Lett., 2001, 18(7): 950-952.

Catalog

    Article views (979) PDF downloads (548) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return