Typesetting math: 100%

Molecular Dynamics Simulations of the Interface between Porous and Fused Silica

  • Received Date: May 24, 2020
  • Published Date: September 30, 2020
  • Molecular dynamics simulations are performed to gain insights into the structural and vibrational properties of interface between porous and fused silica. The Si–O bonds formed in the interface exhibit the same lengths as the bulk material, whereas the coordination defects in the interface are at an intermediate level as compared with the dense and porous structures. Clustered bonds are identified from the interface, which are associated with the reorganization of the silica surface. The bond angle distributions show that the O–Si–O bond angles keep the average value of 109, whereas the Si–O–Si angles of the interface present in a similar manner to those in porous silica. Despite the slight structural differences, similarities in the vibrations are observed, which could further demonstrate the stability of porous silica films coated on the fused silica.
  • Article Text

  • [1]
    Baisden P A, Atherton L J, Hawley R A et al.. 2016 Fusion Sci. Technol. 69 295 doi: 10.13182/FST15-143

    CrossRef Google Scholar

    [2]
    Ruello P, Vaudel G, Brotons G et al.. 2017 Proc. SPIE 10447 1044717

    Google Scholar

    [3]
    Zhang J H, Tian Y, Han W et al.. 2019 Chin. Phys. Lett. 36 116102 doi: 10.1088/0256-307X/36/11/116102

    CrossRef Google Scholar

    [4]
    Tian Y, Du J, Hu D et al.. 2018 Scr. Mater. 149 58 doi: 10.1016/j.scriptamat.2018.02.007

    CrossRef Google Scholar

    [5]
    Deng L, Urata S, Takimoto Y et al.. 2020 J. Am. Ceram. Soc. 103 1600 doi: 10.1111/jace.16837

    CrossRef Google Scholar

    [6]
    Pedone A, Tavanti F, Malavasi G et al.. 2018 J. Non-Cryst. Solids 498 331 doi: 10.1016/j.jnoncrysol.2018.03.040

    CrossRef Google Scholar

    [7]
    Yu Y, Wang B, Wang M et al.. 2016 J. Non-Cryst. Solids 443 148 doi: 10.1016/j.jnoncrysol.2016.03.026

    CrossRef Google Scholar

    [8]
    Du J and Cormack A N 2004 J. Non-Cryst. Solids 349 66 doi: 10.1016/j.jnoncrysol.2004.08.264

    CrossRef Google Scholar

    [9]
    Rimsza J M and Du J 2014 J. Am. Ceram. Soc. 97 772 doi: 10.1111/jace.12707

    CrossRef Google Scholar

    [10]
    Bhattacharya S and Kieffer J 2005 J. Chem. Phys. 122 094715 doi: 10.1063/1.1857522

    CrossRef Google Scholar

    [11]
    Nakano A, Kalia R K and Vashishta P 1994 Phys. Rev. Lett. 73 2336 doi: 10.1103/PhysRevLett.73.2336

    CrossRef Google Scholar

    [12]
    Beckers J V L and de Leeuw S W 2000 J. Non-Cryst. Solids 261 87 doi: 10.1016/S0022-30939900607-9

    CrossRef Google Scholar

    [13]
    Wright A C 1994 J. Non-Cryst. Solids 179 84 doi: 10.1016/0022-30939490687-4

    CrossRef Google Scholar

    [14]
    Lu P F, Wu L Y, Yang Y et al.. 2016 Chin. Phys. B 25 086801 doi: 10.1088/1674-1056/25/8/086801

    CrossRef Google Scholar

    [15]
    Pettifer R F, Dupree R, Farnan I et al.. 1988 J. Non-Cryst. Solids 106 408 doi: 10.1016/0022-30938890299-2

    CrossRef Google Scholar

    [16]
    Galeener F L, Leadbetter A J and Stringfellow M W 1983 Phys. Rev. B 27 1052 doi: 10.1103/PhysRevB.27.1052

    CrossRef Google Scholar

    [17]
    Togo A and Tanaka I 2015 Scr. Mater. 108 1 doi: 10.1016/j.scriptamat.2015.07.021

    CrossRef Google Scholar

  • Related Articles

    [1]MA Chun-Rui, GUI Yuan-Xing, WANG Fu-Jun. Quintessence Contribution to a Schwarzschild Black Hole Entropy [J]. Chin. Phys. Lett., 2007, 24(11): 3286-3289.
    [2]LI Xiang, ZHAO Zheng. Brick Wall Model and the Spectrum of a Schwarzschild Black Hole [J]. Chin. Phys. Lett., 2006, 23(8): 2016-2018.
    [3]LIU Cheng-Zhou. Holographic Entropy Bound of a Nonstationary Black Hole [J]. Chin. Phys. Lett., 2006, 23(5): 1092-1095.
    [4]FANG Heng-Zhong, HU Ya-Peng, ZHAO Zheng. Hawking Radiation from the Horowitz--Strominger Black Hole [J]. Chin. Phys. Lett., 2005, 22(7): 1611-1613.
    [5]CHEN Song-Bai, JING Ji-Liang. Asymptotic Quasinormal Modes of the Garfinkle--Horowitz--Strominger Dilaton Black Hole [J]. Chin. Phys. Lett., 2004, 21(11): 2109-2112.
    [6]JING Ji-Liang, CHEN Song-Bai. Entropy of the Schwarzschild Black Hole in the Painlevé and the Lemaitre Coordinates [J]. Chin. Phys. Lett., 2004, 21(3): 432-434.
    [7]LIU Wen-Biao. Reissner-Nordstrom Black Hole Entropy Inside and Outside the Brick Wall [J]. Chin. Phys. Lett., 2003, 20(3): 440-443.
    [8]LI Zhong-Heng, MI Li-Qin, ZHAO Zheng. Brick Walls for Nonstationary Black Holes [J]. Chin. Phys. Lett., 2002, 19(12): 1755-1758.
    [9]GAO Chang-Jun, SHEN You-Gen. Fermions Entropy of Vaidya-Bonner Black Hole [J]. Chin. Phys. Lett., 2001, 18(9): 1167-1169.
    [10]LIU Wen-Biao, ZHAO Zheng. An Improved Thin Film Brick-Wall Model of Black Hole Entropy [J]. Chin. Phys. Lett., 2001, 18(2): 310-312.

Catalog

    Article views (355) PDF downloads (330) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return