Oscillation and Migration of Bubbles within Ultrasonic Field
-
Abstract
The oscillation and migration of bubbles within an intensive ultrasonic field are important issues concerning acoustic cavitation in liquids. We establish a selection map of bubble oscillation mode related to initial bubble radius and driving sound pressure under 20 kHz ultrasound and analyze the individual-bubble migration induced by the combined effects of pressure gradient and acoustic streaming. Our results indicate that the pressure threshold of stable and transient cavitation decreases with the increasing initial bubble radius. At the pressure antinode, the Bjerknes force dominates the bubble migration, resulting in the large bubbles gathering toward antinode center, whereas small bubbles escape from antinode. By contrast, at the pressure node, the bubble migration is primarily controlled by acoustic streaming, which effectively weakens the bubble adhesion on the container walls, thereby enhancing the cavitation effect in the whole liquid.
Article Text
-
-
-
About This Article
Cite this article:
Wen-Hua Wu, Peng-Fei Yang, Wei Zhai, Bing-Bo Wei. Oscillation and Migration of Bubbles within Ultrasonic Field[J]. Chin. Phys. Lett., 2019, 36(8): 084302. DOI: 10.1088/0256-307X/36/8/084302
Wen-Hua Wu, Peng-Fei Yang, Wei Zhai, Bing-Bo Wei. Oscillation and Migration of Bubbles within Ultrasonic Field[J]. Chin. Phys. Lett., 2019, 36(8): 084302. DOI: 10.1088/0256-307X/36/8/084302
|
Wen-Hua Wu, Peng-Fei Yang, Wei Zhai, Bing-Bo Wei. Oscillation and Migration of Bubbles within Ultrasonic Field[J]. Chin. Phys. Lett., 2019, 36(8): 084302. DOI: 10.1088/0256-307X/36/8/084302
Wen-Hua Wu, Peng-Fei Yang, Wei Zhai, Bing-Bo Wei. Oscillation and Migration of Bubbles within Ultrasonic Field[J]. Chin. Phys. Lett., 2019, 36(8): 084302. DOI: 10.1088/0256-307X/36/8/084302
|