Influence of Debye Plasma on the KLL Dielectronic Recombination of H-Like Helium Ions

Funds: Supported by the National Key Research and Development Program of China under Grant No 2017YFA0402300, and the National Natural Science Foundation of China under Grant Nos 11864036, 11564036 and 11774292.
  • Received Date: March 26, 2019
  • Published Date: July 31, 2019
  • Using the Debye shielding model, the effects of plasma shielding on the dielectronic recombination processes of the H-like helium ions are investigated. It is found that plasma shielding causes a remarkable change in the Auger decay rate of the doubly excited 2p2 3P2 state. As a result, the dielectronic recombination cross sections from the doubly excited 2p2 3P2 state increases with the decreasing Debye shielding length.
  • Article Text

  • [1]
    Salzman D 1998 Atomic Physics in Hot Plasmas Oxford: Oxford University Press

    Google Scholar

    [2]
    Murillo M S, Weisheit J C and Cook J L 1998 Phys. Rep. 302 1 doi: 10.1016/S0370-15739800017-9}

    CrossRef Google Scholar

    [3]
    Kar S and Ho Y K 2005 Phys. Rev. A 72 010703 doi: 10.1103/PhysRevA.72.010703}

    CrossRef Google Scholar

    [4]
    Saha B and Fritzsche S 2006 Phys. Rev. E 73 036405 doi: 10.1103/PhysRevE.73.036405}

    CrossRef Google Scholar

    [5]
    Burgess A and Seaton M J 1964 Mon. Not. R. Astron. Soc. 127 355 doi: 10.1093/mnras/127.5.355}

    CrossRef Google Scholar

    [6]
    Kar S and Ho Y K 1962 J. Quant. Spectrosc. Radiat. Transfer 2 315 doi: 10.1016/0022-40736290015-8}

    CrossRef Google Scholar

    [7]
    Kar S and Ho Y K 2005 Chem. Phys. Lett. 402 544 doi: 10.1016/j.cplett.2004.12.099}

    CrossRef Google Scholar

    [8]
    Kar S and Ho Y K 2007 Phys. Scr. 75 13 doi: 10.1088/0031-8949/75/1/002}

    CrossRef Google Scholar

    [9]
    Kar S and Ho Y K 2007 J. Phys. B 40 1403 doi: 10.1088/0953-4075/40/7/009}

    CrossRef Google Scholar

    [10]
    Liu L, Wang J G and Janev R K 2008 Phys. Rev. A 77 032709 doi: 10.1103/PhysRevA.77.032709}

    CrossRef Google Scholar

    [11]
    Liu L, Wang J G and Janev R K 2009 Phys. Rev. A 79 052702 doi: 10.1103/PhysRevA.79.052702}

    CrossRef Google Scholar

    [12]
    Zhang S B, Wang J G and Janev R K 2010 Phys. Rev. Lett. 104 023203 doi: 10.1103/PhysRevLett.104.023203}

    CrossRef Google Scholar

    [13]
    Janev R K, Zhang S B and Wang J G 2016 Matter Radiat. Extremes 1 237 doi: 10.1016/j.mre.2016.10.002}

    CrossRef Google Scholar

    [14]
    Parpia F A, Fischer C F and Grant I P 1996 Comput. Phys. Commun. 94 249 doi: 10.1016/0010-46559500136-0}

    CrossRef Google Scholar

    [15]
    Grant I P and McKenzie B J 1980 J. Phys. B 13 2671 doi: 10.1088/0022-3700/13/14/007}

    CrossRef Google Scholar

    [16]
    Whitten B L, Lane N E and Weisheit J C 1984 Phys. Rev. A 29 945 doi: 10.1103/PhysRevA.29.945}

    CrossRef Google Scholar

    [17]
    Pindzola M S, Loch S D, Colgan J and Fontes C J 2008 Phys. Rev. A 77 062707 doi: 10.1103/PhysRevA.77.062707}

    CrossRef Google Scholar

    [18]
    Zhang D H, Xie L Y, Ding X B, Fu Y B and Dong C Z 2006 Acta Phys. Sin. 55 112 in Chinese

    Google Scholar

    [19]
    Shi Y L, Dong C Z and Zhang D H 2008 Phys. Lett. A 372 4913 doi: 10.1016/j.physleta.2008.02.089}

    CrossRef Google Scholar

    [20]
    Berry H G, Brooks R L, Hardis J E and Ray W J 1982 Nucl. Instrum. Methods Phys. Res. 202 73 doi: 10.1016/0167-50878290379-9}

    CrossRef Google Scholar

    [21]
    Doyle H, Oppenheimer M and Drake G W F 1972 Phys. Rev. A 5 26 doi: 10.1103/PhysRevA.5.26}

    CrossRef Google Scholar

    [22]
    Callaway J 1978 Phys. Lett. A 66 201 doi: 10.1016/0375-96017890656-4}

    CrossRef Google Scholar

  • Related Articles

    [1]Yuan Yin, Mei Wu, Xiang Ding, Peiyi He, Qize Li, Xiaowen Zhang, Ruixue Zhu, Ruilin Mao, Xiaoyue Gao, Ruochen Shi, Liang Qiao, Peng Gao. Electron microscopy and spectroscopy investigation of atomic, electronic, and phonon structures of NdNiO2/SrTiO3 interface [J]. Chin. Phys. Lett., 2025, 42(4): 047402. doi: 10.1088/0256-307X/42/4/047402
    [2]Shunli Ni, Sheng Ma, Yuhang Zhang, Jie Yuan, Haitao Yang, Zouyouwei Lu, Ningning Wang, Jianping Sun, Zhen Zhao, Dong Li, Shaobo Liu, Hua Zhang, Hui Chen, Kui Jin, Jinguang Cheng, Li Yu, Fang Zhou, Xiaoli Dong, Jiangping Hu, Hong-Jun Gao, Zhongxian Zhao. Anisotropic Superconducting Properties of Kagome Metal CsV3Sb5 [J]. Chin. Phys. Lett., 2021, 38(5): 057403. doi: 10.1088/0256-307X/38/5/057403
    [3]KANG Xiu-Bao, TIAN Tai-He, WANG Zhi-Guo. Optical Nonlinearity of Subwavelength Metal-dielectric Gratings: Effects of Strong Anisotropy [J]. Chin. Phys. Lett., 2011, 28(9): 094206. doi: 10.1088/0256-307X/28/9/094206
    [4]WEI Meng, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, PAN Xu, HOU Qi-Feng, WANG Zhan-Guo. Growth of 2 µm Crack-Free GaN on Si(111) Substrates by Metal Organic Chemical Vapor Deposition [J]. Chin. Phys. Lett., 2011, 28(4): 048102. doi: 10.1088/0256-307X/28/4/048102
    [5]HU Lian, K.Y. Szeto, SUN Xin. Influence of Strong Electron-Electron Interaction on the Peierls Transition [J]. Chin. Phys. Lett., 1997, 14(1): 63-66.
    [6]HU Xiaoming, LIN Zhangda. Observation of the Si(100)-(2 x 2) Phase and Measurements of Low Energy Electron Diffraction I-V Curves [J]. Chin. Phys. Lett., 1995, 12(9): 557-560.
    [7]XU Tiefeng, CHEN Feng, YAN Dadong, LI Wenzhu (Wenzhou Li). Electron-Phonon Vertex Corrections and Superconductivity inAlkali-Metal-Doped C60 Solids [J]. Chin. Phys. Lett., 1994, 11(4): 242-245.
    [8]CHEN Changfeng. COMMENT ON SUPERCONDUCTIVITY CAUSED BY STRONG CORRELATION [J]. Chin. Phys. Lett., 1989, 6(2): 96-96.
    [9]WEI Chongde, LIN Chin, ZHOU Yaqin, WU Ke, Xue Lixin. SUPERCONDUCTIVITY OF LaBa2-xCaxCu3Oy SYSTEM [J]. Chin. Phys. Lett., 1988, 5(7): 301-304.
    [10]FENG Shiping, MA Benkun. SUPERCONDUCTIVITY CAUSED BY STRONG CORRELATION [J]. Chin. Phys. Lett., 1988, 5(5): 229-232.
  • Cited by

    Periodical cited type(12)

    1. Shu, H., Zhong, W., Feng, J. et al. Observation of superconductivity and ferromagnetism in high-entropy carbide ceramics. Acta Materialia, 2025. DOI:10.1016/j.actamat.2024.120693
    2. Ushioda, T., Muranaka, T. Two-gap superconducting states of LaRu3Si2. Physica C: Superconductivity and its Applications, 2024. DOI:10.1016/j.physc.2024.1354583
    3. Zhao, Z., Yao, J., Xu, R. et al. Surface-sensitive electronic structure of kagome superconductor CsV3Sb5. Chinese Physics B, 2024, 33(10): 107403. DOI:10.1088/1674-1056/ad7016
    4. Meena, P.K., Mandal, M., Manna, P. et al. Superconductivity in breathing kagome-structured C14 Laves phase XOs2(X = Zr, Hf). Superconductor Science and Technology, 2024, 37(7): 075004. DOI:10.1088/1361-6668/ad4a32
    5. Liu, J., Zhou, T. Probing the pairing symmetry in kagome superconductors based on the single-particle spectrum. Physical Review B, 2024, 109(5): 054504. DOI:10.1103/PhysRevB.109.054504
    6. Wu, X., Chakraborty, D., Schnyder, A.P. et al. Crossover between electron-electron and electron-phonon mediated pairing on the kagome lattice. Physical Review B, 2024, 109(1): 014517. DOI:10.1103/PhysRevB.109.014517
    7. Wang, Y., Wu, H., McCandless, G.T. et al. Quantum states and intertwining phases in kagome materials. Nature Reviews Physics, 2023, 5(11): 635-658. DOI:10.1038/s42254-023-00635-7
    8. Liu, H., Yao, J., Shi, J. et al. Vanadium-based superconductivity in the breathing kagome compound Ta2 V3.1Si0.9. Physical Review B, 2023, 108(10): 104504. DOI:10.1103/PhysRevB.108.104504
    9. Chen, X.-J., Zhang, B.-W., Han, D. et al. Electronic and topological properties of kagome lattice LaV3Si2. Tungsten, 2023, 5(3): 317-324. DOI:10.1007/s42864-022-00200-2
    10. Liu, Y., Lyu, M., Liu, J. et al. Structural Determination, Unstable Antiferromagnetism and Transport Properties of Fe-Kagome Y0.5Fe3Sn3 Single Crystals. Chinese Physics Letters, 2023, 40(4): 047102. DOI:10.1088/0256-307X/40/4/047102
    11. Wang, Y.. Electronic correlation effects on stabilizing a perfect Kagome lattice and ferromagnetic fluctuation in LaRu3Si2. Journal of University of Science and Technology of China, 2023, 53(7): 0702. DOI:10.52396/JUSTC-2022-0182
    12. Rømer, A.T., Bhattacharyya, S., Valentí, R. et al. Superconductivity from repulsive interactions on the kagome lattice. Physical Review B, 2022, 106(17): 174514. DOI:10.1103/PhysRevB.106.174514

    Other cited types(0)

Catalog

    Article views (327) PDF downloads (503) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return